留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤法珀传感器的改进型相位生成载波法解调

周朕蕊,张国强,邱宗甲,郭少朋,李群,邵剑,吴鹏,陆云才

downloadPDF
周朕蕊, 张国强, 邱宗甲, 郭少朋, 李群, 邵剑, 吴鹏, 陆云才. 光纤法珀传感器的改进型相位生成载波法解调[J]. . doi: 10.37188/CO.2023-0108
引用本文: 周朕蕊, 张国强, 邱宗甲, 郭少朋, 李群, 邵剑, 吴鹏, 陆云才. 光纤法珀传感器的改进型相位生成载波法解调[J]. .doi:10.37188/CO.2023-0108
ZHOU Zhen-rui, ZHANG Guo-qiang, QIU Zong-jia, GUO Shao-peng, LI Qun, SHAO Jian, WU Peng, LU Yun-cai. An improved phase generated carrier demodulation algorithm of fiber optic fabry-perot sensor[J]. Chinese Optics. doi: 10.37188/CO.2023-0108
Citation: ZHOU Zhen-rui, ZHANG Guo-qiang, QIU Zong-jia, GUO Shao-peng, LI Qun, SHAO Jian, WU Peng, LU Yun-cai. An improved phase generated carrier demodulation algorithm of fiber optic fabry-perot sensor[J].Chinese Optics.doi:10.37188/CO.2023-0108

光纤法珀传感器的改进型相位生成载波法解调

doi:10.37188/CO.2023-0108
基金项目:国家重点研发计划(No. 2022YFF0708402)
详细信息
    作者简介:

    周朕蕊(1995—),女,湖北武汉人,博士研究生,2020年于中国科学院电工研究所获得硕士学位,目前主要从事先进光学传感器与电力设备在线监测研究。E-mail:zhouzhenrui@mail.iee.ac.cn

    张国强(1964—),男,河北保定人,博士后,研究员,博士生导师,1989年于清华大学获得硕士学位,1999年于华北电力大学获得博士学位,主要从事电气设备状态检测与故障诊断机理、先进光学传感器与在线监测仪器研制等方面研究。E-mail:zhanggqi@mail.iee.ac.cn

    邱宗甲(1983—),男,山东人,博士,助理研究员,主要从事先进光学传感器与电力设备在线监测的研究。E-mail:qiuzongjia@mail.iee.ac.cn

    郭少朋:郭少鹏(1974—),男,河南人,博士,助理研究员,主要从事等方面研究。E-mail:gsp@mail.iee.ac.cn

    李 群(1967—),男,博士,研究员级高工,主要从事电力设备故障光纤检测、分布式光纤测温、配电网等方面研究。E-mail:qun_li@sina.com

    邵 剑(1991—),男,硕士,主要从事电气智能化研究。E-mail:18851790705@163.com

    吴 鹏(1983—),男,博士,正高级工程师,主要从事高电压与绝缘技术、输变电等研究。E-mail:15105168844@163.com

    陆云才(1982—),男,硕士,主要从事高电压与绝缘技术研究。E-mail:sixhair@163.com

  • 中图分类号:TH741

An improved phase generated carrier demodulation algorithm of fiber optic fabry-perot sensor

Funds:Supported by the National Key Research and Development of China (No. 2022YFF0708402)
More Information
  • 摘要:

    为解决相位生成载波-反正切解调算法(PGC-Atan)的非线性失真问题,搭建了基于改进型PGC-Atan算法的非本征型法珀传感器(EFPI)解调系统。首先,理论分析载波相位调制深度(C)偏离最优值、伴生调幅、载波相位延迟等非线性因素对经典PGC-Atan算法中参与反正切运算的正弦与余弦两路信号的影响。然后,针对外调制或伴生调幅较小的情况,提出了一种基于系数补偿的改进型PGC-Atan算法(PGC-CC-Atan)。该算法通过构造与C值和载波相位延迟有关的系数,消除反正切运算中的非线性参数。针对内调制情况,提出了一种基于椭圆拟合的改进型PGC-Atan算法(PGC-EF-Atan)。该算法通过基于分块矩阵的最小二乘法拟合椭圆并提取3个椭圆参数,进而将受非线性因素影响的正弦与余弦两路信号校正为正交信号。最后,通过仿真验证了改进型算法的正确性,并采用高调制特性的垂直腔面发射 器(VCSEL)和常规腔长的EFPI传感器等搭建PGC解调系统,对比经典PGC-Atan算法与两种改进型算法的解调性能,证实了改进型算法抑制非线性失真的有效性。实验结果表明:一定C值范围内,两种改进型算法可在非线性因素影响下有效解调。PGC-EF-Atan算法相较于PGC-CC-Atan算法,解调信纳比提升了11.602 dB,总谐波失真降低了10.951%。两种改进型算法中,PGC-EF-Atan算法对非线性失真的抑制效果更好,且解调线性度良好,准确度高。

  • 图 1经典PGC-Atan算法原理图

    Figure 1.Schematic diagram of classical PGC-Atan demodulation

    图 2PGC-CC-Atan算法原理图

    Figure 2.Schematic diagram of PGC-CC-Atan demodulation

    图 3PGC-EF-Atan算法原理图

    Figure 3.Schematic diagram of PGC-EF-Atan demodulation

    图 4C偏离2.63 rad时三种算法的仿真结果

    Figure 4.Simulation results of the three algorithms when C deviates from 2.63 rad

    图 5两种非线性因素影响下三种算法的仿真结果

    Figure 5.Simulation results of the three algorithms under the influence of the two nonlinear factors

    图 6三种非线性因素影响下PGC-CC-Atan算法仿真结果

    Figure 6.Simulation results of PGC-CC-Atan algorithms under the influence of the three nonlinear factors

    图 7三种非线性因素影响下PGC-EF-Atan算法仿真结果

    Figure 7.Simulation results of PGC-EF-Atan algorithms under the influence of the three nonlinear factors

    图 8EFPI解调实验平台

    Figure 8.EFPI demodulation experiment platform

    图 9不同C值下两种改进型算法解调结果与参考解调仪结果对比

    Figure 9.Comparison between the demodulation results of the two algorithms under different C and the calibration results of the reference demodulator

    图 10原始信号波形图与频谱图。(a)波形图;(b)频谱图

    Figure 10.The waveform and spectrum of the original signal. (a) Waveform; (b) Spectrum

    图 11经典PGC-Atan算法解调结果。(a)波形图;(b)频谱图

    Figure 11.Demodulation results using PGC-Atan algorithm. (a) waveform; (b) spectrum

    图 12PGC-CC-Atan算法解调结果。(a)波形图;(b)频谱图

    Figure 12.Demodulation results using PGC-CC-Atan algorithm. (a) Waveform; (b) Spectrum

    图 13PGC-EF-Atan算法解调结果。(a)波形图;(b)频谱图;(c)P(t)与Q(t)形成的李萨如图

    Figure 13.Demodulation result of PGC-EF-Atan algorithm. (a) waveform; (b) spectrum; (c) Lissajous figure of P(t) and Q(t)

    图 14PGC-EF-Atan算法解调结果与参考解调仪标定结果对比

    Figure 14.Comparison between the demodulation results of PGC-EF-Atan algorithm and the calibration results of the reference demodulator

    表 1三种解调算法的性能对比

    Table 1.Performance comparison of the three demodulation algorithms

    解调方法 幅值/rad SINAD/dB THD
    PGC-Atan 1.494 13.063 21.276%
    PGC-CC-Atan 0.947 15.189 12.562%
    PGC-EF-Atan 0.910 26.791 1.611%
    下载: 导出CSV
  • [1] PINET É. Fabry-Perot fiber-optic sensors for physical parameters measurement in challenging conditions[J].Journal of Sensors, 2009, 2009: 720980.
    [2] 李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文),2022,15(4):609-624.

    LI A W, SHAN T Q, GUO Q,et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J].Chinese Optics, 2022, 15(4): 609-624. (in Chinese).
    [3] YU L, LANG J J, PAN Y,et al. A hybrid demodulation method of fiber-optic Fabry-Perot pressure sensor[J].Proceedings of SPIE, 2013, 9044: 90441A.
    [4] 张天鹏. 基于冠脉血流储备分数检测的光纤法布里-珀罗传感器研究[D]. 济南: 山东大学, 2019.

    ZHANG T P.Research of fiber Fabry-Perot sensor based on coronary fractional flow reserve detection[D]. Ji’nan: Shandong University, 2019. (in Chinese).
    [5] 张知先, 雷嘉丽, 陈伟根, 等. 基于多参量光纤F-P传感的变压器局部放电与油温传感方法[J]. 高电压技术,2022,48(1):58-65.

    ZHANG ZH X, LEI J L, CHEN W G,et al. Transformer’s partial discharge and oil temperature sensing method based on multi-parameter fiber optic F-P Sensing[J].High Voltage Engineering, 2022, 48(1): 58-65. (in Chinese).
    [6] LIU W, YANG T Y, SHI Y J,et al. White light interference demodulation of optical fiber Fabry-Perot micro-pressure sensors based on the Karhunen-Loeve transform and singular value decomposition[J].Optics Express, 2022, 30(4): 5618-5633.doi:10.1364/OE.450548
    [7] HUANG Y, WANG SH, JIANG J F,et al. Orthogonal phase demodulation of optical fiber Fabry-Perot interferometer based on birefringent crystals and polarization technology[J].IEEE Photonics Journal, 2020, 12(3): 7101209.
    [8] 江毅, 江树桓. 光纤 干涉测量技术在EFPI传感器信号解调中的研究进展[J]. 与光电子学进展,2021,58(13):1306017.

    JIANG Y, JIANG SH H. Research progress on fiber optical laser interferometry in signal demodulation of EFPI sensor[J].Laser & Optoelectronics Progress, 2021, 58(13): 1306017. (in Chinese).
    [9] WANG F Y, XIE J H, HU ZH L,et al. Interrogation of extrinsic Fabry-Perot sensors using path-matched differential interferometry and phase generated carrier technique[J].Journal of Lightwave Technology, 2015, 33(12): 2392-2397.doi:10.1109/JLT.2014.2379943
    [10] 符浩. F-P声压传感器的PGC解调及复用技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    FU H. PGC demodulation and multiplexing research based on Fabry-Perot fiber acoustic sensor[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese).
    [11] 孙韦, 于淼, 常天英, 等. 相位生成载波解调方法的研究[J]. 光子学报,2018,47(8):0806004.doi:10.3788/gzxb20184708.0806004

    SUN W, YU M, CHANG T Y,et al. Research and improvement based on PGC demodulation method[J].Acta Photonica Sinica, 2018, 47(8): 0806004. (in Chinese).doi:10.3788/gzxb20184708.0806004
    [12] 施清平, 王利威, 张敏, 等. 一种消除伴生调幅的光源调频型相位生成载波解调方法[J]. 光电子· ,2011,22(2):180-184.doi:10.16136/j.joel.2011.02.032

    SHI Q P, WANG L W, ZHANG M,et al. Frequency-modulated phase generated carrier demodulation for eliminating companion amplitude modulation[J].Journal of Optoelectronics·Laser, 2011, 22(2): 180-184. (in Chinese).doi:10.16136/j.joel.2011.02.032
    [13] VOLKOV A V, PLOTNIKOV M Y, MEKHRENGIN M V,et al. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors[J].IEEE Sensors Journal, 2017, 17(13): 4143-4150.doi:10.1109/JSEN.2017.2704287
    [14] HOU CH B, GUO SH. Automatic carrier phase delay synchronization of PGC demodulation algorithm in fiber-optic interferometric sensors[J].KSII Transactions on Internet and Information System, 2020, 14(7): 2891-2903.
    [15] 胡雨润, 王目光, 孙春然, 等. 光纤干涉传感器相位生成载波解调算法研究[J]. 技术,2022,46(2):213-219.doi:10.7510/jgjs.issn.1001-3806.2022.02.011

    HU Y R, WANG M G, SUN CH R,et al. Research on improvement of phase generated carrier demodulation algorithm for fiber optic interferometric sensor[J].Laser Technology, 2022, 46(2): 213-219. (in Chinese).doi:10.7510/jgjs.issn.1001-3806.2022.02.011
    [16] QU ZH Y, GUO SH, HOU CH B,et al. Real-time self-calibration PGC-Arctan demodulation algorithm in fiber-optic interferometric sensors[J].Optics Express, 2019, 27(16): 23593-23609.doi:10.1364/OE.27.023593
    [17] HOU CH B, LIU G W, GUO SH,et al. Large dynamic range and high sensitivity PGC demodulation technique for tri-component fiber optic seismometer[J].IEEE Access, 2020, 8: 15085-15092.doi:10.1109/ACCESS.2020.2966280
    [18] 严利平, 周春宇, 谢建东, 等. 基于卡尔曼滤波的PGC解调非线性误差补偿方法[J]. 中国 ,2020,47(9):0904002.doi:10.3788/CJL202047.0904002

    YAN L P, ZHOU CH Y, XIE J D,et al. Nonlinear error compensation method for PGC demodulation based on Kalman filtering[J].Chinese Journal of Lasers, 2020, 47(9): 0904002. (in Chinese).doi:10.3788/CJL202047.0904002
    [19] 畅楠琪, 黄晓砥, 王海斌. 基于EKF参数估计的光纤水听器PGC解调方法研究[J]. 中国 ,2022,49(17):1709001.

    CHANG N Q, HUANG X D, WANG H B. Phase generated carrier demodulation approach in fiber-optic hydrophone based on extended Kalman filter parameter estimation[J].Chinese Journal of Lasers, 2022, 49(17): 1709001. (in Chinese).
    [20] FITZGIBBON A, PILU M, FISHER R B. Direct least square fitting of ellipses[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476-480.doi:10.1109/34.765658
    [21] HALÍŘ R, FLUSSER J. Numerically stable direct least squares fitting of ellipses[C].Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization, 1998.(查阅网上资料, 未找到本条文献出版社信息, 请确认).

    HALÍŘ R, FLUSSER J. Numerically stable direct least squares fitting of ellipses[C].Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization, 1998.(查阅网上资料, 未找到本条文献出版社信息, 请确认).
  • 加载中
图(14)/ 表(1)
计量
  • 文章访问数:25
  • HTML全文浏览量:15
  • PDF下载量:9
  • 被引次数:0
出版历程
  • 网络出版日期:2023-11-07

目录

    /

      返回文章
      返回
        Baidu
        map