-
摘要:
为了实现窄带完美吸收,本文提出了一种简单的三层金-二氧化硅-金薄膜(MDM)结构。通过电磁波时域差分算法(FDTD)进行模拟仿真和理论计算,详细分析了该结构的可调谐吸收特性,同时建立了理论模型,分析了其中存在的电磁模式以及窄带完美吸收的物理机制。首先,利用电磁波时域差分算法和传输矩阵算法(TMM)对该结构进行了理论计算,详细地分析了各个结构参数对吸收光谱的影响。然后,对该结构形成的窄带完美吸收物理机制进行了分析讨论。最后,利用磁控溅射制备手段,成功制备了三层结构的样片。实验观测到的结果与理论仿真一致。实验结果表明:本文提出的窄带完美吸收结构,最窄带宽约为21 nm,最高吸收可达99.51%,基本实现了窄带完美吸收。本文研究成果为相关应用奠定了基础。
Abstract:To achieve perfect narrowband absorber, we proposed a simple three-layer thin film (MDM) structure and developed a theoretical model. A comprehensive investigation was conducted on this structure through a combination of simulations and theoretical calculations. First, we executed theoretical calculations on the structure using both finite-difference time-domain algorithm (FDTD) and transfer matrix algorithm. The effects of several structural parameters on the absorption spectrum were analyzed in this study. We analyzed and discussed the physical mechanism of narrow band perfect absorber structure caused by the structure. Finally, we successfully used magnetron sputtering as a fabrication method to produce three-layer samples. The experimental results were consistent with the theoretical simulation. Our proposed structure for a narrowband perfect absorber can achieve a maximum narrow bandwidth of approximately 21 nm and a maximum absorption of 99.51%. We establish a strong basis for related applications by achieving perfect narrowband absorption.
-
Key words:
- thin film/
- perfect absorber/
- ultrathin film
-
图 4不同顶层金属膜厚度下吸收率的仿真结果。 (a) 单层金薄膜的吸收率。(b) MDM三层结构的吸收率,此时中间层氧化硅厚度固定为125 nm
Figure 4.Simulated results of absorption at different thicknesses of the top Au layer. (a) Simulated absorption curves of single Au film with various thicknesses. (b) Simulated absorption curves of MDM three-layer structure with various thicknesses of the top Au layers, when the thickness of the intermediate silicon oxide is fixed at 125 nm
表 2FDTD模拟仿真、传输矩阵算法计算结果以及实验测试结果对比
Table 2.Comparison of FDTD simulation, transmission matrix algorithm calculation results, and experimental test results
d2(nm) 仿真结果 理论计算 测试结果 共振
波长(nm)最高
吸收共振
波长(nm)最高
吸收共振
波长(nm)最高
吸收半波宽
(nm)85 435 0.9710 438 0.9817 437 0.9831 55 105 485 0.9799 486 0.9755 483 0.9822 31 125 546 0.9872 541 0.9865 540 0.9951 27 155 620 0.9942 622 0.9910 625 0.9843 22 175 669 0.9959 674 0.9976 672 0.9857 21 表 1镀制Au和SiO2薄膜的工艺参数
Table 1.Process parameters for Au and SiO2thin films
溅射功率 氩气 氧气 成膜速率 真空度 Au 100 W 80 sccm 0 0.4 nm/s 1.1 Pa SiO2 120 W 80 sccm 15 sccm 0.2 nm/s 1.1 Pa -
[1] WATTS C M, LIU X L, PADILLA W J. Metamaterial electromagnetic wave absorbers[J].Advanced Materials, 2012, 24(23): OP98-OP120. [2] YONG ZH D, ZHANG S L, GONG CH SH,et al. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications[J].Scientific Reports, 2016, 6: 24063.doi:10.1038/srep24063 [3] TYSON J J, SCHEUL T E, RAHMAN T,et al. Characterising the broadband, wide–angle reflectance properties of black silicon surfaces for photovoltaic applications[J].Optics Express, 2023, 31(17): 28295-28307.doi:10.1364/OE.496448 [4] AZAD A K, KORT-KAMP W J M, SÝKORA M,et al. Metasurface broadband solar absorber[J].Scientific Reports, 2016, 6: 20347.doi:10.1038/srep20347 [5] NAGARAJAN A, VIVEK K, SHAH M,et al. A broadband plasmonic metasurface superabsorber at optical frequencies: analytical design framework and demonstration[J].Advanced Optical Materials, 2018, 6(16): 1800253.doi:10.1002/adom.201800253 [6] LI W, VALENTINE J. Metamaterial perfect absorber based hot electron photodetection[J].Nano Letters, 2014, 14(6): 3510-3514.doi:10.1021/nl501090w [7] DING H, WU SH L, ZHANG CH,et al. Tunable infrared hot-electron photodetection by exciting gap-mode plasmons with wafer-scale gold nanohole arrays[J].Optics Express, 2020, 28(5): 6511-6520.doi:10.1364/OE.387339 [8] DANA B D, JI B Y, LIN J Q,et al. Hybrid plasmonic modes for enhanced refractive index sensing[J].Advanced Sensor Research, 2023. [9] BALLEW C, ROBERTS G, FARAON A. Multi-dimensional wavefront sensing using volumetric meta-optics[J].Optics Express, 2023, 31(18): 28658-28669.doi:10.1364/OE.492440 [10] PARK B, YUN S H, CHO C Y,et al. Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors[J].Light:Science & Applications, 2014, 3(12): e222. [11] LU X Y, ZHANG T Y, WAN R G,et al. Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface[J].Optics Express, 2018, 26(8): 10179-10187.doi:10.1364/OE.26.010179 [12] ZHANG L J, LU W K, ZHU L P,et al. Dual-band complementary metamaterial perfect absorber for multispectral molecular sensing[J].Optics Express, 2023, 31(19): 31024-31038.doi:10.1364/OE.498114 [13] 张志东, 张慧男, 梁洁, 等. 基于Au纳米平行双棒超表面阵列的双Fano共振和折射率传感器特性研究[J]. 中国光学(中英文),2023,16(4):961-971.doi:10.37188/CO.EN-2023-0008ZHANG ZH D, ZHANG H N, LIANG J,et al. Double Fano resonance and refractive index sensors based on parallel-arranged Au nanorod dimer metasurface arrays[J].Chinese Optics, 2023, 16(4): 961-971. (in Chinese).doi:10.37188/CO.EN-2023-0008 [14] 刘强, 赵锦, 孙宇丹, 等. 基于表面等离子体共振的光子准晶体光纤甲烷氢气传感器[J]. 中国光学(中英文),2023,16(1):174-183.doi:10.37188/CO.EN.2022-0006LIU Q, ZHAO J, SUN Y D,et al. A novel methane and hydrogen sensor with surface plasmon resonance-based photonic quasi-crystal fiber[J].Chinese Optics, 2023, 16(1): 174-183. (in Chinese).doi:10.37188/CO.EN.2022-0006 [15] 李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文),2022,15(4):609-624.doi:10.37188/CO.2021-0219LI A W, SHAN T Q, GUO Q,et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J].Chinese Optics, 2022, 15(4): 609-624. (in Chinese).doi:10.37188/CO.2021-0219 [16] COSTANTINI D, LEFEBVRE A, COUTROT A L,et al. Plasmonic metasurface for directional and frequency-selective thermal emission[J].Physical Review Applied, 2015, 4(1): 014023.doi:10.1103/PhysRevApplied.4.014023 [17] LIU X L, TYLER T, STARR T,et al. Taming the blackbody with infrared metamaterials as selective thermal emitters[J].Physical Review Letters, 2011, 107(4): 045901.doi:10.1103/PhysRevLett.107.045901 [18] AMELING R, DREGELY D, GIESSEN H. Strong coupling of localized and surface plasmons to microcavity modes[J].Optics Letters, 2011, 36(12): 2218-2220.doi:10.1364/OL.36.002218 [19] YU L, LIANG Y ZH, GAO H X,et al. Multi-resonant absorptions in asymmetric step-shaped plasmonic metamaterials for versatile sensing application scenarios[J].Optics Express, 2022, 30(2): 2006-2017.doi:10.1364/OE.446195 [20] QIN ZH, SHI X Y, YANG F M,et al. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring[J].Optics Express, 2022, 30(1): 473-483.doi:10.1364/OE.446655 [21] HU X L, SUN L B, ZENG B B,et al. Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission[J].Applied Optics, 2016, 55(1): 148-152.doi:10.1364/AO.55.000148 [22] RAKHSHANI M R, RASHKI M. Metamaterial perfect absorber using elliptical nanoparticles in a multilayer metasurface structure with polarization independence[J].Optics Express, 2022, 30(7): 10387-10399.doi:10.1364/OE.454298 [23] DING T, SIGLE D, ZHANG L W,et al. Controllable tuning plasmonic coupling with nanoscale oxidation[J].ACS Nano, 2015, 9(6): 6110-6118.doi:10.1021/acsnano.5b01283 [24] KATS M A, BLANCHARD R, GENEVET P,et al. Nanometre optical coatings based on strong interference effects in highly absorbing media[J].Nature Materials, 2013, 12(1): 20-24.doi:10.1038/nmat3443 [25] PALIK E D.Handbook of Optical Constants of Solids[M]. Orlando: Academic Press, 1998. [26] HAO J M, ZHOU L, QIU M. Nearly total absorption of light and heat generation by plasmonic metamaterials[J].Physical Review B, 2011, 83(16): 165107.doi:10.1103/PhysRevB.83.165107