留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于掩模光刻的液晶波前校正器设计与制备

杜莹,陈梅蕊,刘禹彤,曹宗新,毛红敏,李小平,孙会娟,曹召良

downloadPDF
杜莹, 陈梅蕊, 刘禹彤, 曹宗新, 毛红敏, 李小平, 孙会娟, 曹召良. 基于掩模光刻的液晶波前校正器设计与制备[J]. . doi: 10.37188/CO.2023-0137
引用本文: 杜莹, 陈梅蕊, 刘禹彤, 曹宗新, 毛红敏, 李小平, 孙会娟, 曹召良. 基于掩模光刻的液晶波前校正器设计与制备[J]. .doi:10.37188/CO.2023-0137
DU Ying, CHEN MeiRui, LIU YuTong, CAO ZongXin, MAO HongMin, LI XiaoPing, SUN HuiJuan, CAO ZhaoLiang. Design and fabrication of liquid crystal wavefront corrector based on mask lithography[J]. Chinese Optics. doi: 10.37188/CO.2023-0137
Citation: DU Ying, CHEN MeiRui, LIU YuTong, CAO ZongXin, MAO HongMin, LI XiaoPing, SUN HuiJuan, CAO ZhaoLiang. Design and fabrication of liquid crystal wavefront corrector based on mask lithography[J].Chinese Optics.doi:10.37188/CO.2023-0137

基于掩模光刻的液晶波前校正器设计与制备

doi:10.37188/CO.2023-0137
基金项目:“十四五”江苏省重点学科资助(No. 2021135);北京联合大学科研项目资助(No. ZK70202007);吉林省科技厅重点研发项目(No. 20220203033SF)
详细信息
    作者简介:

    杜 莹(1999—),女,河南商丘人,硕士研究生,2021年于嘉兴学院获得学士学位,主要从事光电仪器与智能检测技术方面的研究。E-mail:2356657379@qq.com

    孙会娟(1976—),女,河南济源人,硕士研究生,副教授,主要从事液晶器件及其光学应用方面的研究。E-mail:shjwwcnu@163.com

    曹召良(1974—),男,河南济源人,博士,教授,2008年于中国科学长春光学精密机械与物理研究所获得博士学位,主要从事液晶自适应光学系统光学设计,光学实验以及理论分析和模拟方面的研究。E-mail:caozl@usts.edu.cn

  • 中图分类号:O436

Design and fabrication of liquid crystal wavefront corrector based on mask lithography

Funds:This work was supported by Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); Supported by the Academic Research Projects of Beijing Union University(No. ZK70202007); Key R&D Projects of Jilin Provincial Department of Science and Technology(No. 20220203033SF)
More Information
  • 摘要:

    液晶波前校正器通常基于液晶显示器的工艺制备而成,因此其研制成本高、定制难度大。本文基于掩模光刻法制备液晶波前校正器,以实现液晶波前校正器的专用化、低成本研制。首先,基于掩模光刻技术设计并制备了91像素的无源液晶驱动电极,并封装成液晶光学校正单元。然后,设计并制备了驱动连接电路板,实现液晶光学驱动单元和驱动电路板的匹配对接。接着,进行液晶波前校正器响应特性检测,结果显示,其相位调制量为5.5个波长,响应时间为224 ms。最后,利用Zygo干涉仪进行球面波的产生和静态倾斜像差的校正,结果显示,其可以产生正负离焦波前,且对水平倾斜像差校正后,Zernike多项式中第一项的值从1.18降至0.16,校正幅度达86%,实现了像差的有效校正。本文的研究工作可为液晶波前校正器的研制提供新思路,进而拓宽其应用领域和场景。

  • 图 1(a)未施加电压(b)施加电压

    Figure 1.(a) No voltage applied; (b) Applied voltage

    图 2(a)驱动电极结构;(b)液晶盒封装结构;(c)电极间走线

    Figure 2.(a) Structure of driving electrode; (b) Packaging structure of liquid crystal cell; (c) Wiring between electrodes

    图 3驱动连接板设计图

    Figure 3.Design drawing of the driving connection board

    图 4(a)、(b)镀金驱动电极不同位置的显微镜照片;(c)封装的液晶盒

    Figure 4.(a) and (b) Different location of gold-plated driving electrodes observed with the microscope; (c) Packaged liquid crystal cell

    图 5制备的液晶波前校正器

    Figure 5.Fabricated liquid crystal wavefront corrector

    图 6液晶波前校正器响应特性测试光路

    Figure 6.Optical layout for testing the response characteristic of liquid crystal wavefront corrector

    图 7(a)单像素驱动响应结果 (b)驱动通道与像素对应位置关系

    Figure 7.(a) Response result with single pixel driving; (b) Corresponding relationship between the driving channel and pixel position

    图 8(a)示波器测量的光强变化曲线 (b)时间与相位关系曲线

    Figure 8.(a) Intensity curve measured with oscilloscope; (b) Phase as a function of response time

    图 9(a)灰度级与相位关系曲线(b)相位调制误差

    Figure 9.(a) Phase as a function of gray level; (b) Phase modulation error

    图 10像差校正实验光路

    Figure 10.Optical setup for aberration correction

    图 11(a)干涉条纹;(b)原始波面;(c)相对测量波面

    Figure 11.(a) Interference fringe, (b) Initial wave surface and (c) Relative measured wavefront

    图 12第一行:施加正离焦,(a)干涉条纹,(b)立体波面,(c)波前;第二行:施加负离焦,(d)干涉条纹,(e)立体波面,(f)波前

    Figure 12.First line: negative defocus, (a) Interference fringe, (b) Stereoscopic wavefront and (c) Two-dimensional wavefront; Second line: positive defocus, (d) Interference fringe, (e) Stereoscopic wavefront and (f) Two-dimensional wavefront

    图 13校正前:(a)干涉条纹,(b)波前;校正后:(c)干涉条纹,(d)波前

    Figure 13.Before correction: (a)Interference fringe and (b) Wavefront; After correction: (c) Interference fringe and (d) Wavefront

    图 14校正前后泽尼克多项式系数

    Figure 14.Zernike coefficient without and with correction

  • [1] SHAH S, SUBRAMANIAN S, ANUPAMA G C,et al. Towards the development of the Infrared Guide Star Catalogue for the adaptive optics observations by the Thirty Meter Telescope[J].Proceedings of SPIE, 2022, 12185: 1218506.
    [2] WALSH S M, KARPATHAKIS S F E, MCCANN A S,et al. Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates[J].Scientific Reports, 2022, 12(1): 18345.doi:10.1038/s41598-022-22027-0
    [3] KWON Y, HONG J H, KANG S,et al. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin[J].Nature Communications, 2023, 14(1): 105.doi:10.1038/s41467-022-35738-9
    [4] BURNS S A, ELSNER A E, SAPOZNIK K A,et al. Adaptive optics imaging of the human retina[J].Progress in Retinal and Eye Research, 2019, 68: 1-30.doi:10.1016/j.preteyeres.2018.08.002
    [5] YANG Y Q, KANG X W, CAO L C. Robust propagation of a steady optical beam through turbulence with extended depth of focus based on spatial light modulator[J].Journal of Physics:Photonics, 2023, 5(3): 035002.doi:10.1088/2515-7647/acd28c
    [6] 马阎星, 吴坚, 粟荣涛, 等. 光学相控阵技术发展概述[J]. 红外与 工程,2020,49(10):20201042.

    MA Y X, WU J, SU R T,et al. Review of optical phased array techniques[J].Infrared and Laser Engineering, 2020, 49(10): 20201042. (in Chinese).
    [7] DOU R SH, GILES M K. Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder[J].Optics Letters, 1995, 20(14): 1583-1585.doi:10.1364/OL.20.001583
    [8] 宣丽, 刘永军, 胡立发, 等. 一种纯位相透射式TFT液晶波前校正器的制备方法: 中国, 200410011218.3[P]. 2006-02-01.(查阅网上资料, 未找到对应的英文翻译, 请确认).
    [9] HU L F, XUAN L, LIU Y J,et al. Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision[J].Optics Express, 2004, 12(26): 6403-6409.doi:10.1364/OPEX.12.006403
    [10] YIN SH, ZENG D H, CHEN Y T,et al. Optically controlled terahertz dynamic beam splitter with adjustable split ratio[J].Nanomaterials, 2022, 12(7): 1169.doi:10.3390/nano12071169
    [11] BURNS D C, UNDERWOOD I, GOURLAY J,et al. A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator[J].Optics Communications, 1995, 119(5-6): 623-632.doi:10.1016/0030-4018(95)00414-4
    [12] 罗娜, 杨文皓, 王琦. 液晶相控阵技术的研究进展[J]. 光学仪器,2023,45(2):75-82.

    LUO N, YANG W H, WANG Q. Research progress in liquid crystal phased array technology[J].Optical Instruments, 2023, 45(2): 75-82. (in Chinese).
    [13] SERATI S A, XIA X W, MUGHAL O,et al. High-resolution phase-only spatial light modulators with submillisecond response[J].Proceedings of SPIE, 2003, 5106: 138-145.doi:10.1117/12.488311
    [14] 陈颖, 黄润坤, 吴頔, 等. 全球光刻胶产业现状及布局[J]. 中国集成电路,2023,32(5):22-26,65.

    CHEN Y, HUANG R K, WU D,et al. The current situation and layout of the photoresist industry[J].China Integrated Circuit, 2023, 32(5): 22-26,65. (in Chinese).
    [15] CAO ZH L, PENG Z H, XUAN L,et al. Design and fabrication of 2 kHz nematic liquid crystal variable retarder with reflection mode[J].Liquid Crystals, 2020, 47(6): 870-881.doi:10.1080/02678292.2019.1686778
    [16] 杨雅淇. 双波前校正器校正畸变波前的实验研究[D]. 西安: 西安理工大学, 2022.

    YANG Y Q. Experimental research on correction of distorted wavefront by dual wavefront corrector[D]. Xi’an: Xi’an University of Technology, 2022. (in Chinese).
    [17] LOVE G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator[J].Applied Optics, 1997, 36(7): 1517-1524.doi:10.1364/AO.36.001517
    [18] 陈梅蕊, 杜莹, 毛红敏, 等. 无源液晶光学器件的低成本驱动电路设计[J]. 液晶与显示,2022,37(12):1572-1579.doi:10.37188/CJLCD.2022-0266

    CEHN M R, DU Y, MAO H M,et al. Design of low-cost drive circuit for passive liquid crystal optical device[J].Chinese Journal of Liquid Crystals and Displays, 2022, 37(12): 1572-1579. (in Chinese).doi:10.37188/CJLCD.2022-0266
    [19] 李艳丽, 刘显和, 伍强. 先进光刻技术的发展历程与最新进展[J]. 与光电子学进展,2022,59(9):0922006.

    LI Y L, LIU X H, WU Q. Evolution and updates of advanced photolithography technology[J].Laser & Optoelectronics Progress, 2022, 59(9): 0922006. (in Chinese).
    [20] CHAKER A, ALTY H R, TIAN P,et al. Nanoscale patterning of zinc oxide from zinc acetate using electron beam lithography for the preparation of hard lithographic masks[J].ACS Applied Nano Materials, 2021, 4(1): 406-413.doi:10.1021/acsanm.0c02756
    [21] 芦永军, 曹召良, 曲艳玲, 等. 液晶波前校正器动态位相响应特性研究[J]. 液晶与显示,2012,27(6):730-735.doi:10.3788/YJYXS20122706.0730

    LU Y J, CAO ZH L, QU Y L,et al. Dynamic phase response of liquid crystal wavefront corrector[J].Chinese Journal of Liquid Crystals and Displays, 2012, 27(6): 730-735. (in Chinese).doi:10.3788/YJYXS20122706.0730
    [22] PENG Z H, WANG Q D, LIU Y G,et al. Electrooptical properties of new type fluorinated phenyl-tolane isothiocyanate liquid crystal compounds[J].Liquid Crystals, 2016, 43(2): 276-284.doi:10.1080/02678292.2015.1105311
    [23] GU D F, WINKER B K, TABER D B,et al. Dual frequency liquid crystal devices for infrared electro-optical applications[J].Proceedings of SPIE, 4799, 2002,4799: 37-47.
    [24] 曹召良, 穆全全, 胡立发, 等. 液晶波前校正器位相调制非线性及闭环校正研究[J]. 液晶与显示,2008,23(2):157-162.

    CAO Z L, MU Q Q, HU L F,et al. Nonlinear phase modulation of liquid crystal wavefront corrector and closed loop correction[J].Chinese Journal of Liquid Crystals and Displays, 2008, 23(2): 157-162. (in Chinese).
    [25] LIU C, MU Q Q, HU L F,et al. High precision Zernike modal gray map reconstruction for liquid crystal corrector[J].Chinese Physics B, 2010, 19(6): 064214.doi:10.1088/1674-1056/19/6/064214
    [26] 范君柳, 吴泉英, 陈宝华, 等. 基于双泽尼克多项式的多视场稀疏孔径成像[J]. 光学学报, 2023, 43(10): 1011001.

    FAN J L, WU Q Y, CHEN B H,etal. Multi-field-of-view sparse aperture imaging based on double Zernike polynomials[J].ActaOpticaSinica, 2023, 43(10): 87-96. (in Chinese).
    [27] 王英. 相干光通信系统的非共光路像差校准实验研究[D]. 西安: 西安理工大学, 2021.

    WANG Y. Experimental study on non common path aberration calibration of coherent optical communication system[D]. Xi’an: Xi’an University of Technology, 2021. (in Chinese).
    [28] 张天宇, 王钢, 张熙, 等. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学,2022,15(3):545-551.doi:10.37188/CO.2021-0182

    ZHANG T Y, WANG G, ZHANG X,et al. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J].Chinese Optics, 2022, 15(3): 545-551. (in Chinese).doi:10.37188/CO.2021-0182
  • 加载中
图(14)
计量
  • 文章访问数:30
  • HTML全文浏览量:15
  • PDF下载量:11
  • 被引次数:0
出版历程
  • 网络出版日期:2023-11-07

目录

    /

      返回文章
      返回
        Baidu
        map