-
摘要:
针对高能 器出光过程中出现的大量离焦和0°像散低阶像差这一现象,提出了基于哈特曼波前传感器和二维整形光路的XY离焦像差校正方法。首先通过对Zernike多项式的离焦项和0°像散项进行线性组合得到XY离焦像差表达式,该XY离焦像差系数大小可直接表征X离焦和Y离焦的波前PV值。同时,通过微调高能 器中二维整形光路中的镜子间距,可实现 器输出光束XY离焦波面的补偿。因此,首先利用哈特曼波前传感器提取出光束的XY离焦像差系数大小,而后计算机再根据XY离焦像差系数大小实时闭环微调二维整形光路中的镜子间距,从而实现XY离焦像差的校正,改善输出光束的光束质量。实验结果表明,该方法可有效地将高能 器输出光束XY离焦量的PV值由5.2 μm和1.1 μm校正到0.5 μm以下,相应的光束质量
β 因子由3.1降到1.8,光束质量得到明显改善。Abstract:A method for correcting XY defocus aberrations, based on Hartmann-Shack wavefront sensor and two-dimensional beam-shaping light path, was presented due to the large percentage of defocus and 0° astigmatism aberrations with large PV values in high-energy laser beam. The first step is to derive an expression for XY defocus aberrations by linearly combining the defocus and 0° astigmatism terms of Zernike polynomials. The coefficients directly characterize the wavefront peak-to-valley (PV) values of X and Y defocus. At the same time, compensation for XY defocus wavefronts of the laser beam can be achieved by fine-tuning the mirror spacing in the two-dimensional shaping optics of the high-energy laser. Therefore, this study utilizes the Hartmann wavefront sensor to extract the coefficients of XY defocus aberrations from the laser beam. The computer dynamically adjusts the mirror spacing in the two-dimensional shaping optics based on these coefficient values to correct XY defocus aberrations and improve the beam quality of the output laser beam. The results of the experiment showcase a significant decrease in XY defocus aberrations from 5.2 μm and 1.1 μm to less than 0.5 μm, as well as a decrease in
β factor from 3.1 to 1.8, resulting in substantial improvement in beam quality.-
Key words:
- high energy laser/
- beam quality/
- aberration correction/
- beam shaping/
- matrix optics
-
-
[1] 王艳茹, 王建忠, 冉铮惠, 等. 高能 光束质量β因子的影响因素分析[J]. 中国光学,2021,14(2):353-360.doi:10.37188/CO.2020-0137WANG Y R, WANG J ZH, RAN ZH H,et al. Analysis of effects on the beam qualityβfactor of high power laser[J].Chinese Optics, 2021, 14(2): 353-360. (in Chinese).doi:10.37188/CO.2020-0137 [2] 刘泽金, 周朴, 许晓军. 高能 光束质量通用评价标准的探讨[J]. 中国 ,2009,36(4):773-778.doi:10.3788/CJL20093604.0773LIU Z J, ZHOU P, XU X J. Study on universal standard for evaluating high energy beam quality[J].Chinese Journal of Lasers, 2009, 36(4): 773-778. (in Chinese).doi:10.3788/CJL20093604.0773 [3] 王启晗, 姚强强, 冯驰. 热透镜焦距和球差影响光束质量的分析模型[J]. 与光电子学进展,2018,55(8):081402.WANG Q H, YAO Q Q, FENG CH. Analytical model for thermal focal length and spherical aberration on beam quality[J].Laser & Optoelectronics Progress, 2018, 55(8): 081402. (in Chinese). [4] 牛志峰, 郭建增, 周小红. 变形镜受热变形引起的波前畸变仿真及补偿[J]. 强 与粒子束,2015,27(1):011010.doi:10.3788/HPLPB20152701.11010NIU ZH F, GUO J Z, ZHOU X H. Simulation and compensation of wavefront aberration caused by deformable mirror thermal deformation[J].High Power Laser and Particle Beams, 2015, 27(1): 011010. (in Chinese).doi:10.3788/HPLPB20152701.11010 [5] 胡小川, 彭家琪, 张彬. 变形镜热形变及其对光束质量的影响分析[J]. 中国 ,2015,42(1):0102003.doi:10.3788/CJL201542.0102003HU X CH, PENG J Q, ZHANG B. Thermal distortion of deformable mirror and its influence on beam quality[J].Chinese Journal of Lasers, 2015, 42(1): 0102003. (in Chinese).doi:10.3788/CJL201542.0102003 [6] RODDIER F. Curvature sensing and compensation: a new concept in adaptive optics[J].Applied Optics, 1988, 27(7): 1223-1225.doi:10.1364/AO.27.001223 [7] JEONG T M, KO D K, LEE J. Method of reconstructing wavefront aberrations from the intensity measurement[J].Optics Letters, 2007, 32(24): 3507-3509.doi:10.1364/OL.32.003507 [8] 潘国涛, 闫钰锋, 于信, 等. 矩形大口径 光束质量评价光学系统设计[J]. 中国光学,2022,15(2):306-317.PAN G T, YAN Y F, YU X,et al. Design of optical system for quality evaluation of a large rectangular aperture laser beam[J].Chinese Optics, 2022, 15(2): 306-317. (in Chinese). [9] LAI B H, DONG L ZH, CHEN SH Q,et al. Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system[J].Chinese Optics Letters, 2016, 14(9): 091402.doi:10.3788/COL201614.091402 [10] YU X, DONG L ZH, LAI B H,et al. Automatic low-order aberration correction based on geometrical optics for slab lasers[J].Applied Optics, 2017, 56(6): 1730-1739.doi:10.1364/AO.56.001730 [11] 余江川, 田博宇, 钟哲强, 等. 大遮拦比薄管 环域像差校正方法[J]. 中国 ,2020,47(9):0905001.doi:10.3788/CJL202047.0905001YU J CH, TIAN B Y, ZHONG ZH Q,et al. Method for annular aberration correction of large-aperture thin-wall tube lasers[J].Chinese Journal of Lasers, 2020, 47(9): 0905001. (in Chinese).doi:10.3788/CJL202047.0905001 [12] 李国会, 杜应磊, 徐宏来, 等. 双变形镜对Yb: YAG板条 器光束质量校正技术[J]. 红外与 工程,2022,51(8):20210800.LI G H, DU Y L, XU H L,et al. Correction of beam quality correction of Yb: YAG laser with double deformable mirrors[J].Infrared and Laser Engineering, 2022, 51(8): 20210800. (in Chinese). [13] 赵宪宇, 薛栋林, 程强. 哈特曼原理子口径斜率扫描检测及误差研究[J]. 红外与 工程,2019,48(8):0813003.doi:10.3788/IRLA201948.0813003ZHAO X Y, XUE D L, CHENG Q. Research on Hartmann principle based on sub-aperture slope scanning detection and error[J].Infrared and Laser Engineering, 2019, 48(8): 0813003. (in Chinese).doi:10.3788/IRLA201948.0813003 [14] 朱沁雨, 陈梅蕊, 陆焕钧, 等. 微透镜阵列衍射效应对夏克—哈特曼波前探测器的影响分析[J]. 中国光学,2023,16(1):94-102.doi:10.37188/CO.2022-0176ZHU Q Y, CHEN M R, LU H J,et al. Analysis of influence of diffraction effect of microlens array on Shack-Hartmann wavefront sensor[J].Chinese Optics, 2023, 16(1): 94-102. (in Chinese).doi:10.37188/CO.2022-0176 [15] YANG P, LIU Y, YANG W. Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror[J].Optics Communications, 2007, 278(2): 377-381.doi:10.1016/j.optcom.2007.06.043 [16] 王海铭, 权佳宁, 葛宝臻. 适用于近地面成像的自适应光学系统研究[J]. 中国光学,2023,16(4):843-852.doi:10.37188/CO.2022-0230WANG H M, QUAN J N, GE B ZH. An adaptive optics system suitable for near-ground imaging[J].Chinese Optics, 2023, 16(4): 843-852. (in Chinese).doi:10.37188/CO.2022-0230 [17] YANG P, NING Y, LEI X,et al. Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror[J].Optics Express, 2010, 18(7): 7121-7130.doi:10.1364/OE.18.007121 [18] 张天宇, 王钢, 张熙, 等. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学,2022,15(3):545-551.doi:10.37188/CO.2021-0182ZHANG T Y, WANG G, ZHANG X,et al. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J].Chinese Optics, 2022, 15(3): 545-551. (in Chinese).doi:10.37188/CO.2021-0182 [19] LIU G L, YANG H F, RAO CH H,et al. Experimental verification of combinational-deformable-mirror for phase correction[J].Chinese Optics Letters, 2007, 5(10): 559-562. [20] 张雨东, 饶长辉, 李新阳. 自适应光学及 操控[M]. 北京: 国防工业出版社, 2016: 17-26.ZHANG Y D, RAO CH H, LI X Y. Adaptive Optics and Laser Manipulation[M]. Beijing: National Defense Industry Press, 2016: 17-26. (in Chinese)(查阅网上资料, 未找到对应的英文翻译, 请确认). [21] MAHAJAN V N. Zernike circle polynomials and optical aberrations of systems with circular pupils[J].Applied Optics, 1994, 33(34): 8121-8124.doi:10.1364/AO.33.008121 [22] 郭建增, 刘铁根, 王振华, 等. 基于整形光路的低阶像差校正方法[J]. 强 与粒子束,2012,24(8):1797-1800.doi:10.3788/HPLPB20122408.1797GUO J Z, LIU T G, WANG ZH H,et al. Method for lower order aberration correction based on beam shaping[J].High Power Laser and Particle Beams, 2012, 24(8): 1797-1800. (in Chinese).doi:10.3788/HPLPB20122408.1797 [23] 石顺祥, 张海兴, 刘劲松. 物理光学与应用光学[M]. 西安: 西安电子科技大学出版社, 2000: 380-390.SHI SH X, ZHANG H X, LIU J S.Physical Optics and Applied Optics[M]. Xi’an: Xi’an University of Electronic Science and Technology Press, 2000: 380-3906. (in Chinese)(查阅网上资料, 未找到对应的英文翻译, 请确认). [24] 卢亚雄, 吕百达. 矩阵光学[M]. 大连: 大连理工大学出版社, 1989: 48-82.LU Y X, LV B D.Matrix Optics[M]. Dalian: Dalian University of Technology Press, 2000: 380-3906. (in Chinese)(查阅网上资料, 未找到对应的英文翻译, 请确认).