留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高重频声光门控自吸收免疫 诱导击穿光谱技术分析研究

陈斐,王树青,程年恺,张婉飞,张岩,梁佳慧,张雷,王钢,马晓飞,刘珍荣,罗学彬,叶泽甫,朱竹军,尹王保,肖连团,贾锁堂

downloadPDF
陈斐, 王树青, 程年恺, 张婉飞, 张岩, 梁佳慧, 张雷, 王钢, 马晓飞, 刘珍荣, 罗学彬, 叶泽甫, 朱竹军, 尹王保, 肖连团, 贾锁堂. 高重频声光门控自吸收免疫 诱导击穿光谱技术分析研究[J]. , 2024, 17(2): 253-262. doi: 10.37188/CO.2023-0147
引用本文: 陈斐, 王树青, 程年恺, 张婉飞, 张岩, 梁佳慧, 张雷, 王钢, 马晓飞, 刘珍荣, 罗学彬, 叶泽甫, 朱竹军, 尹王保, 肖连团, 贾锁堂. 高重频声光门控自吸收免疫 诱导击穿光谱技术分析研究[J]. , 2024, 17(2): 253-262.doi:10.37188/CO.2023-0147
CHEN Fei, WANG Shu-qing, CHENG Nian-kai, ZHANG Wan-fei, ZHANG Yan, LIANG Jia-hui, ZHANG Lei, WANG Gang, MA Xiao-fei, LIU Zhen-rong, LUO Xue-bin, YE Ze-fu, ZHU Zhu-jun, YIN Wang-bao, XIAO Lian-tuan, JIA Suo-tang. Study and analysis of self-absorption-free laser-induced breakdown spectroscopy with high-repetition rate acousto-optic gating[J]. Chinese Optics, 2024, 17(2): 253-262. doi: 10.37188/CO.2023-0147
Citation: CHEN Fei, WANG Shu-qing, CHENG Nian-kai, ZHANG Wan-fei, ZHANG Yan, LIANG Jia-hui, ZHANG Lei, WANG Gang, MA Xiao-fei, LIU Zhen-rong, LUO Xue-bin, YE Ze-fu, ZHU Zhu-jun, YIN Wang-bao, XIAO Lian-tuan, JIA Suo-tang. Study and analysis of self-absorption-free laser-induced breakdown spectroscopy with high-repetition rate acousto-optic gating[J].Chinese Optics, 2024, 17(2): 253-262.doi:10.37188/CO.2023-0147

高重频声光门控自吸收免疫 诱导击穿光谱技术分析研究

doi:10.37188/CO.2023-0147
基金项目:国家重点研发计划(No. 2017YFA0304203); 长江学者和创新团队发展计划(No. IRT_17R70); 国家自然科学基金(No. 61975103,No. 61875108,No. 61775125,No. 11434007);山西省科技重大专项(No. 201804D131036);111计划(No. D18001);山西省“1331工程”重点学科建设计划
详细信息
    作者简介:

    张 雷(1981—),男,山西运城人,教授,博士生导师,2003 年于沈阳航空航天大学获得学士学位,2008 年于山西大学获得博士学位,主要从事 诱导击穿多光谱融合检测、 复合光谱立体侦察、机器视觉光学图像等技术的研究。E-mail:k1226@sxu.edu.cn

    尹王保(1965—),男,山西运城人,教授,博士生导师,1986 年、2003 年于山西大学分别获得学士和博士学位,研究领域为基于吸收光谱理论的污染气体、危险气体的光学检测和基于 诱导感生光谱(LIBS)的物体成分检测。E-mail:ywb65@sxu.edu.cn

  • 中图分类号:O433.4

Study and analysis of self-absorption-free laser-induced breakdown spectroscopy with high-repetition rate acousto-optic gating

Funds:Supported by National Key R&D Program of China (No. 2017YFA0304203); Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT_17R70); National Natural Science Foundation of China (No. 61975103, No. 61875108, No. 61775125 and No. 11434007); Major Special Science and Technology Projects in Shanxi (No. 201804D131036); 111 Project (No. D18001); Fund for Shanxi ‘1331KSC’
More Information
  • 摘要:

    为了消除 诱导击穿光谱技术(laser-induced breakdown spectroscopy,LIBS)中的自吸收效应,提高元素定量分析的精确度,同时满足工业中便捷分析元素的要求,需将自吸收免疫 诱导击穿光谱技术(self-absorption free laser-induced breakdown spectroscopy,SAF-LIBS)的装置小型化。本文提出了一项新型的高重频声光门控SAF-LIBS定量分析技术,使用高重频 器产生准连续的等离子体以增强光谱强度,并将声光调制器(acousto-optic modulator,AOM)作为门控开关,从而使微型CCD光谱仪和AOM能够代替传统大型SAF-LIBS装置中的像增强探测器(intensified charge coupled device,ICCD)和中阶梯型光栅光谱仪,实现自吸收免疫的同时缩小了装置的体积,降低了装置的成本。将该系统参数进行优化选择后,对样品中的Al元素进行了定量分析和预测。实验结果表明,等离子体的特性受 重复频率的影响进而会影响光谱信号的强度。在1 ~ 50 kHz 重复频率范围内,Al I 394.4 nm和Al I 396.15 nm的双线强度先增强后减弱,确定最佳的 重复频率为10 kHz。在不同的光纤采集角度下,Al的双线强度比随延迟时间的增加而减小,在45°处信噪比最高,且在一定的积分时间下,最佳光学薄时间 t ot为426 ns。在 重复频率为10 kHz、光纤采集角为45°、延迟时间为400 ns的条件下,对Al元素进行定量分析和预测结果表明,Al元素定标曲线的线性度 R 2为0.982,平均绝对测量误差相对于单一LIBS的0.8%可以降低至0.18%。定量分析结果与传统大型SAF-LIBS装置的测量精度相持平。因此本高重频声光门控SAF-LIBS装置不仅有效地屏蔽了光学厚等离子体中的连续背景辐射和谱线加宽,同时具备小型化、低成本、高可靠性的优点,有助于推动SAF-LIBS技术由实验室走向工业应用。

  • 图 1高重频声光门控SAF-LIBS实验装置(上)与AOM工作原理(下)

    Figure 1.Experimental setup for high repetition rate acousto-optic gating SAF-LIBS (above) and principle diagram of AOM (below)

    图 2实验装置的工作时序

    Figure 2.Working time sequence scheme of the experimental setup

    图 3压片样品

    Figure 3.Press tablet sample

    图 4不同 重复频率下Al原子双线

    Figure 4.Doublet lines of Al atom at different laser repetition rates

    图 5Al I 396.15 nm所获定标曲线的线性度

    Figure 5.Linearity of calibration curves by using Al I 396.15 nm

    图 6不同光纤收集角时(a)Al双线强度比随延迟时间变化情况以及(b)最佳延迟时间与SNR的变化

    Figure 6.(a) Temporal evolutions of Al doublet intensity ratio and (b) optimal delay times and SNRs at different fiber collection angles

    图 7不同Al含量样品等离子体中(a)双线强度比随延迟时间的变化曲线及(b)tot

    Figure 7.(a) Doublet intensity ratio varying with delay times and (b)totvalues at different aluminum contents

    图 8(a)延迟时间分别为200 ns、400 ns、800 ns时的Al定标曲线及预测值;(b)不同实验条件下对Al含量预测误差比较,序号1~4分别对应200 ns、400 ns、800 ns和无AOM

    Figure 8.(a) Calibration curves and predicted results of Al at delay times of 200 ns, 400 ns and 800 ns; (b) comparison of prediction errors of Al under different experimental conditions, the numbers 1-4 here correspond to delay of 200 ns, 400 ns, 800 ns and without AOM, respectively

    表 1不同压片样品中的Al含量

    Table 1.Aluminum content in different press tablet samples

    样品编号 1 2 3 4 5 6 7 8 9 10
    占比(%) 5 6 7 8 9 10 11 13 16 19
    下载: 导出CSV
  • [1] ZHOU ZH Y, GE Y F, LIU Y ZH. Real-time monitoring of carbon concentration using laser-induced breakdown spectroscopy and machine learning[J].Optics Express, 2021, 29(24): 39811-39823.doi:10.1364/OE.443732
    [2] 甄佳, 乌日娜, 付林, 等. 基于 诱导击穿光谱的塑料鉴别研究[J]. 与红外,2022,52(11):1587-1591.doi:10.3969/j.issn.1001-5078.2022.11.001

    ZHEN J, WU R N, FU L,et al. Identification of plastics based on laser-induced breakdown spectroscopy[J].Laser & Infrared, 2022, 52(11): 1587-1591 (in Chinese).doi:10.3969/j.issn.1001-5078.2022.11.001
    [3] LANGROUDI P P, KAPTEINA G, ILLGUTH M. Automated distinction between cement paste and aggregates of concrete using laser-induced breakdown spectroscopy[J].Materials, 2021, 14(16): 4624.doi:10.3390/ma14164624
    [4] PENG J Y, LIU Y F, YE L F,et al. Fast detection of minerals in rice leaves under chromium stress based on laser-induced breakdown spectroscopy[J].Science of the Total Environment, 2023, 860: 160545.doi:10.1016/j.scitotenv.2022.160545
    [5] 舒开强, 陈友元, 彭郑英, 等. 铀矿中多目标元素的 诱导击穿光谱定量分析方法研究[J]. 分析化学,2023,51(7):1195-1203.

    SHU K Q, CHEN Y Y, PENG ZH Y,et al. Laser-induced breakdown spectroscopy for quantitative analysis of multi-target elements in uranium ore[J].Chinese Journal of Analytical Chemistry, 2023, 51(7): 1195-1203. (in Chinese).
    [6] 程军杰, 曹智, 杨灿然, 等. 便携式远程 诱导击穿光谱系统及其定量分析性能[J]. 应用化学,2022,39(9):1447-1452.doi:10.19894/j.issn.1000-0518.210547

    CHENG J J, CAO ZH, YANG C R,et al. Quantitative analysis with a portable remote laser-induced breakdown spectroscopy system[J].Chinese Journal of Applied Chemistry, 2022, 39(9): 1447-1452. (in Chinese).doi:10.19894/j.issn.1000-0518.210547
    [7] KONJEVIĆ N. Plasma broadening and shifting of non-hydrogenic spectral lines: present status and applications[J].Physics Reports, 1999, 316(6): 339-401.doi:10.1016/S0370-1573(98)00132-X
    [8] HOU J J, ZHANG L, ZHAO Y,et al. Mechanisms and efficient elimination approaches of self-absorption in LIBS[J].Plasma Science and Technology, 2019, 21(3): 034016.doi:10.1088/2058-6272/aaf875
    [9] PALLESCHI V. Avoiding Misunderstanding self-Absorption in laser-induced breakdown spectroscopy (LIBS) analysis[J].Spectroscopy, 2022, 37(8): 60-62.
    [10] EL SHERBINI A M, EL SHERBINI T M, HEGAZY H,et al. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements[J].Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(12): 1573-1579.doi:10.1016/j.sab.2005.10.011
    [11] LI T Q, HOU Z Y, FU Y T,et al. Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference[J].Analytica Chimica Acta, 2019, 1058: 39-47.doi:10.1016/j.aca.2019.01.016
    [12] ALFARRAJ B A, BHATT C R, YUEH F Y,et al. Evaluation of optical depths and self-absorption of strontium and Aluminum emission lines in laser-induced breakdown spectroscopy (LIBS)[J].Applied Spectroscopy, 2017, 71(4): 640-650.doi:10.1177/0003702817693231
    [13] MOON H Y, HERRERA K K, OMENETTO N,et al. On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2009, 64(7): 702-713.doi:10.1016/j.sab.2009.06.011
    [14] CAI S, TANG Y, WANG F,et al. Investigation of the multi-elemental self-absorption mechanism and experimental optimization in laser-induced breakdown spectroscopy[J].Journal of Analytical Atomic Spectrometry, 2020, 35(5): 912-926.doi:10.1039/D0JA00048E
    [15] HU ZH L, NIE J F, OUYANG ZH Y,et al. Self-absorption correction method for one-point calibration laser-induced breakdown spectroscopy[J].Optics Letters, 2023, 48(1): 1-4.doi:10.1364/OL.472224
    [16] 侯华明, 李颖, 卢渊, 等. 诱导镍等离子体的自吸收时间分辨特性研究[J]. 光谱学与光谱分析,2011,31(3):595-599.

    HOU H M, LI Y, LU Y,et al. Time-resolved evaluation of self-absorption in laser induced plasma from nickel sample[J].Spectroscopy and Spectral Analysis, 2011, 31(3): 595-599. (in Chinese).
    [17] SABRI N M, HAIDER Z, TUFAIL K,et al. Spectroscopic diagnostics of laser induced plasma and self-absorption effects in Al lines[J].Physics of Plasmas, 2018, 25(7): 073303.doi:10.1063/1.5023666
    [18] 马云云, 刘国荣, 魏秀芳, 等. 诱导锌等离子体的自吸收效应研究[J]. 西北师范大学学报(自然科学版),2022,58(4):45-49, 57.doi:10.16783/j.cnki.nwnuz.2022.04.007

    MA Y Y, LIU G R, WEI X F,et al. Study on self-absorption effect of laser induced zinc plasmas[J].Journal of Northwest Normal University (Natural Science), 2022, 58(4): 45-49, 57. (in Chinese).doi:10.16783/j.cnki.nwnuz.2022.04.007
    [19] HOU J J, ZHANG L, YIN W B,et al. Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements[J].Optics Express, 2017, 25(19): 23024-23034.doi:10.1364/OE.25.023024
    [20] HOU J J, ZHANG L, ZHAO Y,et al. Rapid selection of analytical lines for SAF-LIBS based on the doublet intensity ratios at the initial and final stages of plasma[J].Optics Express, 2019, 27(22): 32184-32192.doi:10.1364/OE.27.032184
    [21] SAKKA T, IRIE K, FUKAMI K,et al. Emission spectroscopy of laser ablation plasma with time gating by acousto-optic modulator[J].Review of Scientific Instruments, 2011, 82(2): 023112.doi:10.1063/1.3544021
    [22] POřÍZKA P, KLESSEN B, KAISER J,et al. High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection[J].Review of Scientific Instruments, 2014, 85(7): 073104.doi:10.1063/1.4890337
  • 加载中
图(8)/ 表(1)
计量
  • 文章访问数:203
  • HTML全文浏览量:66
  • PDF下载量:82
  • 被引次数:0
出版历程
  • 收稿日期:2023-08-23
  • 修回日期:2023-09-07
  • 网络出版日期:2023-12-08

目录

    /

      返回文章
      返回

        重要通知

        2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《 》作为ESCI期刊将与全球SCI期刊共同排名!

        Baidu
        map