Design of cooled infrared dual-band zoom optical system with large-magnification-ratio
-
摘要:
第三代红外焦平面探测器的不断发展使得探测器可以同时对两个不同波段的红外辐射进行响应,从而输出双波段对应图像,双波段图像在目标探测和识别领域应用前景广阔。本文针对航空探测应用,采用320×256双色红外制冷型探测器,设计了一种工作波段在中波3.7~4.8 μm和长波7.7~9.5 μm的大变倍比制冷型红外双波段变焦光学系统,用于对目标的红外探测。该光学系统采用折射式和折反式结构相结合的方式,可实现光学四视场切换式大范围变焦,采用二次成像以达到100%冷光阑效率。该光学系统四视场焦距分别为32 mm、200 mm、800 mm、
1600 mm,变倍比为50×。实验结果表明,该光学系统在双波段各变倍状态下,在调制传递函数特征频率为17 lp/mm时均接近衍射极限。该光学系统具有双波段、变倍范围大、大变倍比、快速切换多视场、结构简单紧凑、成像质量高等特征,将在搜索、侦察等安防领域中得到广泛应用。Abstract:The development of third-generation infrared focal plane detectors allows them to respond simultaneously to two different bands of infrared radiation, and the dual-band image brings significant benefits to target detection and identification. In this paper, a cooled infrared dual-band zoom optical system with large-magnification-ratio is designed for aerial detection applications. The system includes a 320×256 dual-color infrared-cooled detector. It operates in the bands of 3.7−4.8 μm in mid-wave and 7.7−9.5 μm in long-wave. The optical system adopts the combination of refractive and catadioptric structures to realize an optical four-field-of-view switching wide-range zoom. In order to realize the 100% cold diaphragm efficiency, a secondary imaging mode is adopted. The four-field-of-view focal lengths of the optical system are 32 mm, 200 mm, 800 mm, and
1600 mm, and the zoom ratio is 50×. The experimental results show that the optical system is close to the diffraction limit at a modulation transfer function eigenfrequency of 17 lp/mm in each dual-band zoom state. The optical system has dual-band characteristics, extensive zoom ratio and large range, fast switching of multiple fields of view, simple and compact structure, and high-quality imaging, which will be useful in a wide range of security fields such as searching, reconnaissance, and so on.-
Key words:
- dual-band /
- cooled /
- large-magnification-ratio /
- optical system
-
图 6 衍射圈入能量图。(a)中波短焦;(b)长波短焦;(c)中波中焦;(d)长波中焦;(e)中波长焦;(f)长波长焦;(g)中波超长焦;(h)长波超长焦
Figure 6. Diffraction enclosed energy diagrams. (a) MWIR short focus; (b) LWIR short focus; (c) MWIR middle focus; (d) LWIR middle focus; (e) MWIR long focus; (f) LWIR long focus; (g) MWIR super long focus; (h) LWIR super long focus
表 1 光学系统设计指标
Table 1. Design specifications of the optical system
项目 指标 工作波段/μm 3.7~4.8&7.7~9.5 焦距/mm 32;200;800; 1600 FOV/(°) 21.75;3.52;0.88;0.44 F数 4.0;8.0 变焦倍率 50× 冷屏到像面间隔/mm 20 总长/mm 300 表 2 宽波段红外材料
Table 2. Wide-band infrared materials
材料 透射范围
(μm)折射率
(λ=4 μm)阿贝数
(λ为3~5 μm)阿贝数
(λ为8~12 μm)Ge 2~12 4.0247 103.4 834.3 ZnSe 0.55~18 2.4331 176.9 58.0 ZnS(BROAD) 0.42~18.2 2.3468 109.63 22.9 AMTIR1 1~14 2.5144 196.7 115.2 表 3 冷反射严重面中波/长波YNI和I/IBAR值
Table 3. Cold reflection severe surface MWIR/LWIR YNI and I/IBAR values
表面 5 6 7 10 14 YNI −0.811 −0.849 0.044 0.176 0.516 −0.806 −0.845 0.047 0.185 0.522 I/IBAR 0.319 0.357 0.107 0.154 0.541 0.320 0.357 0.129 0.169 0.550 -
[1] 白瑜, 廖志远, 廖胜, 等. 共孔径消热差红外双波段光学系统[J]. 光学 精密工程,2016,24(2):268-277. doi: 10.3788/OPE.20162402.0268BAI Y, LIAO ZH Y, LIAO SH, et al. Infrared dual band athermal optical system with common aperture[J]. Optics and Precision Engineering, 2016, 24(2): 268-277. (in Chinese). doi: 10.3788/OPE.20162402.0268 [2] 聂怀乐, 毛珊, 赵建林. 制冷型折衍混合双波段红外光学系统无热化设计[J]. 光学学报,2023,43(8):0822025. doi: 10.3788/AOS221965NIE H L, MAO SH, ZHAO J L. Athermalization design of cooled refractive-diffractive hybrid dual-band infrared optical system[J]. Acta Optica Sinica, 2023, 43(8): 0822025. (in Chinese). doi: 10.3788/AOS221965 [3] 何红星. 分孔径三视场中波红外光学系统[J]. 光学 精密工程,2017,25(7):1757-1763.HE H X. MWIR optical system with dual-optical aperture and three fields of view[J]. Optics and Precision Engineering, 2017, 25(7): 1757-1763. (in Chinese). [4] VIZGAITIS J N. Optical concepts for dual band infrared continuous zoom lenses[J]. Proceedings of SPIE, 2010, 7652: 76522E. [5] VIZGAITIS J N, HASTINGS A R JR. Dual band infrared picture-in-picture systems[J]. Optical Engineering, 2013, 52(6): 061306. doi: 10.1117/1.OE.52.6.061306 [6] ZHANG B, CUI Q F, PIAO M X, et al. Design of dual-band infrared zoom lens with multilayer diffractive optical elements[J]. Applied Optics, 2019, 58(8): 2058-2067. doi: 10.1364/AO.58.002058 [7] 党更明, 高明, 吕宏. 双波段共口径连续变焦光学系统设计[J]. 西安工业大学学报,2022,42(6):578-587.DANG G M, GAO M, LYU H. Design of a dual-band and common-aperture continuous zoom optical system[J]. Journal of Xi’an Technological University, 2022, 42(6): 578-587. (in Chinese). [8] 曲贺盟, 张新. 高速切换紧凑型双视场无热化红外光学系统设计[J]. 中国光学,2014,7(4):622-630.QU H M, ZHANG X. Design of athermalized infrared optical system with high-speed switching and compact dual-FOV[J]. Chinese Optics, 2014, 7(4): 622-630. (in Chinese). [9] 毛延凯, 赵振宇, 张国华, 等. 红外双波段/双视场导引头的光学设计[J]. 红外与金宝搏188软件怎么用 工程,2020,49(7):20190490. doi: 10.3788/IRLA20190490MAO Y K, ZHAO ZH Y, ZHANG G H, et al. Optical design of infrared dual band/dual field of view seeker[J]. Infrared and Laser Engineering, 2020, 49(7): 20190490. (in Chinese). doi: 10.3788/IRLA20190490 [10] 栗洋洋, 杨加强, 彭晴晴, 等. 制冷型红外双波段广角无热化光学系统设计[J]. 金宝搏188软件怎么用 与红外,2023,53(5):712-715. doi: 10.3969/j.issn.1001-5078.2023.05.011LI Y Y, YANG J Q, PENG Q Q, et al. Design of cooled infrared dual-band wide angle athermal optical system[J]. Laser & Infrared, 2023, 53(5): 712-715. (in Chinese). doi: 10.3969/j.issn.1001-5078.2023.05.011 [11] 陈洁, 夏团结, 杨童, 等. 长波红外与金宝搏188软件怎么用 共孔径双模导引光学系统研究[J]. 光学学报,2023,43(12):1222001. doi: 10.3788/AOS221609CHEN J, XIA T J, YANG T, et al. Research on long-wave infrared and laser common-aperture dual-mode guided optical system[J]. Acta Optica Sinica, 2023, 43(12): 1222001. (in Chinese). doi: 10.3788/AOS221609 [12] 王嘉晨, 李江勇. 变F数红外光学设计方法[J]. 金宝搏188软件怎么用 与红外,2022,52(6):909-913. doi: 10.3969/j.issn.1001-5078.2022.06.019WANG J CH, LI J Y. Infrared optical design method of variable F number[J]. Laser & Infrared, 2022, 52(6): 909-913. (in Chinese). doi: 10.3969/j.issn.1001-5078.2022.06.019 [13] 王希, 彭晴晴, 徐长彬, 等. 大视场大孔径制冷型红外光学系统设计[J]. 金宝搏188软件怎么用 与红外,2023,53(10):1575-1578. doi: 10.3969/j.issn.1001-5078.2023.10.017WANG X, PENG Q Q, XU CH B, et al. Refrigerated infrared optical system design with large aperture and wide field-of-view[J]. Laser & Infrared, 2023, 53(10): 1575-1578. (in Chinese). doi: 10.3969/j.issn.1001-5078.2023.10.017 [14] 李刚, 杨晓许, 张恒金, 等. 基于卡塞格林系统的红外制冷型长焦分档变倍光学系统的设计[J]. 中国光学,2014,7(2):293-300.LI G, YANG X X, ZHANG H J, et al. Design of cooled infrared switch-zoom optical system with long effective focal length based on R-C system[J]. Chinese Optics, 2014, 7(2): 293-300. (in Chinese). [15] 王金沙, 巩岩, 高志山, 等. 双波段长后工作距连续变焦光学系统设计[J]. 金宝搏188软件怎么用 与光电子学进展,2023,60(21):2122004.WANG J SH, GONG Y, GAO ZH SH, et al. Design of dual-band optical system with long back working distance and continuous zoom[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2122004. (in Chinese). [16] 杨明洋, 杨洪涛, 曲锐, 等. 80倍中波红外连续变焦光学系统设计[J]. 光子学报,2017,46(5):0522003. doi: 10.3788/gzxb20174605.0522003YANG M Y, YANG H T, QU R, et al. Design of high ratio middle infrared continuous zoom optical system[J]. Acta Photonica Sinica, 2017, 46(5): 0522003. (in Chinese). doi: 10.3788/gzxb20174605.0522003 [17] 党更明, 高明, 范晨, 等. 红外双波段共焦复合孔径光学系统设计[J]. 光学学报,2023,43(8):0822019. doi: 10.3788/AOS221905DANG G M, GAO M, FAN CH, et al. Design of infrared dual-band confocal composite aperture optical system[J]. Acta Optica Sinica, 2023, 43(8): 0822019. (in Chinese). doi: 10.3788/AOS221905 [18] 卜和阳, 虞林瑶, 田浩南, 等. 中波红外成像系统冷反射抑制[J]. 中国光学(中英文),2023,16(6):1414-1423. doi: 10.37188/CO.2023-0008BU H Y, YU L Y, TIAN H N, et al. Narcissus suppression of medium-wave infrared imaging system[J]. Chinese Optics, 2023, 16(6): 1414-1423. (in Chinese). doi: 10.37188/CO.2023-0008 [19] 李岩, 张葆, 洪永丰. 大变倍比中波红外变焦光学系统设计[J]. 光学学报,2013,33(4):0422005. doi: 10.3788/AOS201333.0422005LI Y, ZHANG B, HONG Y F, et al. Design of large zoom ratio middle wavelength infrared zoom optical system[J]. Acta Optica Sinica, 2013, 33(4): 0422005. (in Chinese). doi: 10.3788/AOS201333.0422005 [20] 单秋莎, 谢梅林, 刘朝晖, 等. 制冷型长波红外光学系统设计[J]. 中国光学(中英文),2022,15(1):72-78. doi: 10.37188/CO.2021-0116SHAN Q SH, XIE M L, LIU ZH H, et al. Design of cooled long-wavelength infrared imaging optical system[J]. Chinese Optics, 2022, 15(1): 72-78. (in Chinese). doi: 10.37188/CO.2021-0116