-
摘要:
为了提高自注入锁定金宝搏188软件怎么用 器的频率连续可调谐范围,对法布里-珀罗(FP)微腔在频率热调谐过程中注入锁定相位的变化关系进行研究。在传统频率热调谐的基础上,对自注入锁定金宝搏188软件怎么用 器频率和相位等参数特性进行研究,提出一种在频率热调谐时加入自注入锁定相位补偿和DFB芯片电流补偿的改进算法,并在一台基于FP微腔自注入锁定金宝搏188软件怎么用 器上对此算法进行验证实验。这台金宝搏188软件怎么用 器的波长为
1550 nm,3 dB线宽为785 Hz,通过一对加热电阻对FP微腔进行频率热调谐。实验结果表明:金宝搏188软件怎么用 器硬件部分未作任何修改的情况下,改进后的算法在金宝搏188软件怎么用 器原有驱动控制电路的单片机程序中实现了6 GHz的频率连续调谐范围。该工作为自注入锁定金宝搏188软件怎么用 器提供一种简单高效且稳定性好的频率调谐方案,具有较高的实用性和市场前景。-
关键词:
- 金宝搏188软件怎么用 器 /
- 频率调谐 /
- 自注入 /
- 窄线宽
Abstract:In order to expand the continuous tunable range of a self-injection-locked laser frequency, the variation relationship of the injected locking phase of the Fabry-Perot (FP) microcavity during the frequency-thermal tuning process is studied. Based on the traditional frequency-thermal tuning methods, we explore the frequency and phase parameter characteristics of a self-injection locked laser. We propose an improved algorithm which adds self-injection locking phase compensation and DFB chip current compensation during frequency-thermal tuning methods. Experimental validation of this algorithm is conducted on a FP micro-cavity self-injection locked laser. The laser operates at a wavelength of
1550 nm with a 3 dB linewidth of 785 Hz, achieving frequency-thermal tuning methods of the FP micro-cavity using a pair of heating resistors. The improved algorithm is implemented within the microcontroller program of the laser's original drive control circuit. No modifications are made to the hardware components of the laser. Ultimately, a continuous frequency tuning range of 6 GHz is realized. This work provides a simple, efficient, and stable frequency-tuning solution for self-injection-locked lasers, demonstrating high practicality and promising market prospects.-
Key words:
- lasers /
- frequency tuning /
- self-injection locking /
- narrow linewidth
-
-
[1] 孙仕豪, 郑也, 于淼, 等. 基于多纵模振荡种子源的高功率窄线宽光纤金宝搏188软件怎么用 器关键技术分析及研究现状[J]. 中国光学(中英文),2024,17(1):38-51. doi: 10.37188/CO.2023-0074SUN SH H, ZHENG Y, YU M, et al. Key technology analysis and research progress of high-power narrow linewidth fiber laser based on the multi-longitudinal-mode oscillator seed source[J]. Chinese Optics, 2024, 17(1): 38-51. (in Chinese). doi: 10.37188/CO.2023-0074 [2] DREVER R W P, HALL J L, KOWALSKI F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105. [3] LUDLOW A D, HUANG X, NOTCUTT M, et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15[J]. Optics Letters, 2007, 32(6): 641-643. doi: 10.1364/OL.32.000641 [4] SAVCHENKOV A A, CHRISTENSEN J E, HUCUL D, et al. Application of a self-injection locked cyan laser for barium ion cooling and spectroscopy[J]. Scientific Reports, 2020, 10(1): 16494. doi: 10.1038/s41598-020-73373-w [5] LAI Y H, ELIYAHU D, GANJI S, et al. 780 nm narrow-linewidth self-injection-locked WGM lasers[J]. Proceedings of SPIE, 2020, 11266: 112660O. [6] NUNZI CONTI G, BARUCCI A, BERNESCHI S, et al. Coupling approaches and new geometries in whispering-gallery-mode resonators[J]. Proceedings of SPIE, 2012, 8236: 82360V. doi: 10.1117/12.909596 [7] LI J CH, ZHANG B Y, YANG S G, et al. Robust hybrid laser linewidth reduction using Si3N4-based subwavelength hole defect assisted microring reflector[J]. Photonics Research, 2021, 9(4): 558-566. doi: 10.1364/PRJ.412284 [8] 杜悦宁, 陈超, 秦莉, 等. 硅光子芯片外腔窄线宽半导体金宝搏188软件怎么用 器[J]. 中国光学,2019,12(2):229-241. doi: 10.3788/co.20191202.0229DU Y N, CHEN CH, QIN L, et al. Narrow linewidth external cavity semiconductor laser based on silicon photonic chip[J]. Chinese Optics, 2019, 12(2): 229-241. (in Chinese). doi: 10.3788/co.20191202.0229 [9] ZHAO Y, LI Y, WANG Q, et al. 100-Hz Linewidth diode laser with external optical feedback[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1795-1798. doi: 10.1109/LPT.2012.2214029 [10] 刘云凤, 梁伟. 自注入锁定外腔超窄线宽半导体金宝搏188软件怎么用 [J]. 中国金宝搏188软件怎么用 ,2021,48(17):1715001. doi: 10.3788/CJL202148.1715001LIU Y F, LIANG W. Compact narrow linewidth external cavity semiconductor laser realized by self-injection locking to Fabry-Perot cavity[J]. Chinese Journal of Lasers, 2021, 48(17): 1715001. (in Chinese). doi: 10.3788/CJL202148.1715001 [11] SU Q SH, WEI F, CHEN CH, et al. A self-injection locked laser based on high-Q micro-ring resonator with adjustable feedback[J]. Journal of Lightwave Technology, 2023, 41(21): 6756-6763. doi: 10.1109/JLT.2023.3291753 [12] ZHANG CH W, XU CH D, JIN Y, et al. Narrow linewidth semiconductor laser with a multi-period-delayed feedback photonic circuit[J]. Optics Express, 2022, 30(9): 15796-15806. doi: 10.1364/OE.458327 [13] HULME J C, DOYLEND J K, BOWERS J E. Widely tunable Vernier ring laser on hybrid silicon[J]. Optics Express, 2013, 21(17): 19718-19722. doi: 10.1364/OE.21.019718 [14] GUAN H, NOVACK A, GALFSKY T, et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication[J]. Optics Express, 2018, 26(7): 7920-7933. doi: 10.1364/OE.26.007920 [15] REN M, CAI H, TAO J F, et al. A tunable laser using loop-back external cavity based on double ring resonators[C]. Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, IEEE, 2013: 1424-1427. [16] REN M, CAI H, TSAI J M, et al. A tunable laser using double-ring resonator external cavity via free-carrier dispersion effect[C]. 16th International Solid-State Sensors, Actuators and Microsystems Conference, IEEE, 2011: 1504-1507. [17] LIANG W, LIU Y F. Compact sub-hertz linewidth laser enabled by self-injection lock to a sub-milliliter FP cavity[J]. Optics Letters, 2023, 48(5): 1323-1326. doi: 10.1364/OL.481552 [18] PENG Y. A novel scheme for hundred-hertz linewidth measurements with the self-heterodyne method[J]. Chinese Physics Letters, 2013, 30(8): 084208. doi: 10.1088/0256-307X/30/8/084208 [19] KONDRATIEV N M, LOBANOV V E, CHERENKOV A V, et al. Self-injection locking of a laser diode to a high-Q WGM microresonator[J]. Optics Express, 2017, 25(23): 28167-28178. doi: 10.1364/OE.25.028167 [20] GALIEV R R, KONDRATIEV N M, LOBANOV V E, et al. Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator[J]. Physical Review Applied, 2020, 14(1): 014036. doi: 10.1103/PhysRevApplied.14.014036 [21] KONDRATIEV N M, LOBANOV V E, SHITIKOV A E, et al. Recent advances in laser self-injection locking to high-Q microresonators[J]. Frontiers of Physics, 2023, 18(2): 21305. doi: 10.1007/s11467-022-1245-3