留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维低频光纤布拉格光栅振动传感器的设计

刘强 李文静 马超 魏淑辉 付天舒 于波 刘超

刘强, 李文静, 马超, 魏淑辉, 付天舒, 于波, 刘超. 二维低频光纤布拉格光栅振动传感器的设计[J]. 188bet网站真的吗 , 2024, 17(6): 1450-1457. doi: 10.37188/CO.2024-0069
引用本文: 刘强, 李文静, 马超, 魏淑辉, 付天舒, 于波, 刘超. 二维低频光纤布拉格光栅振动传感器的设计[J]. 188bet网站真的吗 , 2024, 17(6): 1450-1457. doi: 10.37188/CO.2024-0069
LIU Qiang, LI Wen-jing, MA Chao, WEI Shu-hui, FU Tian-shu, YU Bo, LIU Chao. Design of two-dimensional low-frequency fiber Bragg grating vibration sensor[J]. Chinese Optics, 2024, 17(6): 1450-1457. doi: 10.37188/CO.2024-0069
Citation: LIU Qiang, LI Wen-jing, MA Chao, WEI Shu-hui, FU Tian-shu, YU Bo, LIU Chao. Design of two-dimensional low-frequency fiber Bragg grating vibration sensor[J]. Chinese Optics, 2024, 17(6): 1450-1457. doi: 10.37188/CO.2024-0069

二维低频光纤布拉格光栅振动传感器的设计

cstr: 32171.14.CO.2024-0069
基金项目: 黑龙江省省属本科高校“优秀青年教师基础研究支持计划”(No. YQJH2023077)
详细信息
    作者简介:

    刘 强(1980—),男,黑龙江泰来人,博士,教授,2012年于哈尔滨工程大学获得博士学位,主要从事光纤传感技术研究。 E-mail:nepulq@126.com

    刘 超(1978—),男,黑龙江木兰人,博士,教授,博士生导师,2008年于哈尔滨工业大学获得博士学位,主要从事微结构光学器件研究。E-mail:msm-liu@126.com

  • 中图分类号: TP212.9

Design of two-dimensional low-frequency fiber Bragg grating vibration sensor

Funds: Supported by The Basic Research Support Project for the Excellent Youth Scholars of Heilongjiang Province (No. YQJH2023077)
More Information
  • 摘要:

    本文设计了一种可在x轴和z轴方向工作的对称圆形柔性铰链式二维振动传感器,以对低频振动信号进行获取和监测。从理论上分析了传感结构的力学特性,在Comsol中建立模型进行仿真分析,并采用有限元法对结构进行优化设计,将铰链谐振频率设计为420 Hz。采用光纤布拉格光栅(FBG)作为应变检测器件粘贴在铰链结构表面,利用边沿滤波器法实现FBG的动态解调,采用标准振动台对传感器性能进行测试。实验结果表明该传感器在x轴和z轴的谐振频率为420 Hz,工作频率为20~300 Hz。在平坦区的平均灵敏度为1847.32 mV/g,加速度分辨率达5.41×10−4 g。该传感器在所有二维方向上的横向干扰水平均小于5%。本文设计的传感器为二维振动传感器,可适用于低频振动信号的高灵敏检测。

     

  • 图 1  传感器结构模型

    Figure 1.  The sensing structure model

    图 2  传感结构仿真分析结果

    Figure 2.  Simulation analysis results of sensing structure

    图 3  不同结构参数对应变和固有频率的影响

    Figure 3.  The influence of different structural parameters on strain and natural frequency

    图 4  光纤光栅边缘解调方法

    Figure 4.  The edge demodulation method of FBG

    图 5  实验装置

    Figure 5.  Experimental setup

    图 6  不同波长解调的幅频响应实验

    Figure 6.  Amplitude-frequency response at different wavelengths

    图 7  传感器响应实验

    Figure 7.  Response experiment of the sensor

    图 8  不同振动频率下的传感器灵敏度

    Figure 8.  The sensitivity of the sensor at different vibration frequencies

    图 9  传感器的交叉干扰特性

    Figure 9.  The cross-interference characteristics of the sensor

    Baidu
  • [1] DU C, DUTTA S, KURUP P, et al. A review of railway infrastructure monitoring using fiber optic sensors[J]. Sensors and Actuators A: Physical, 2020, 303: 111728. doi: 10.1016/j.sna.2019.111728
    [2] AZHAR A S, KUDUS S A, JAMADIN A, et al. Recent vibration-based structural health monitoring on steel bridges: systematic literature review[J]. Ain Shams Engineering Journal, 2024, 15(3): 102501. doi: 10.1016/j.asej.2023.102501
    [3] SONG G D, WANG J Y, LIU T Y, et al. Optical fiber grating strain acceleration sensors ground vibration experimental research[J]. Procedia Engineering, 2011, 26: 784-793. doi: 10.1016/j.proeng.2011.11.2238
    [4] JOHNSON SINGH M, CHOUDHARY S, CHEN W B, et al. Applications of fibre Bragg grating sensors for monitoring geotechnical structures: a comprehensive review[J]. Measurement, 2023, 218: 113171. doi: 10.1016/j.measurement.2023.113171
    [5] YÜKSEL K, KINET D, MOEYAERT V, et al. Railway monitoring system using optical fiber grating accelerometers[J]. Smart Materials and Structures, 2018, 27(10): 105033. doi: 10.1088/1361-665X/aadb62
    [6] ZHU L Q, SUN G K, BAO W M, et al. Structural deformation monitoring of flight vehicles based on optical fiber sensing technology: a review and future perspectives[J]. Engineering, 2022, 16: 39-55. doi: 10.1016/j.eng.2021.02.022
    [7] GAO ZH Y, ZHU X J, FANG Y B, et al. Active monitoring and vibration control of smart structure aircraft based on FBG sensors and PZT actuators[J]. Aerospace Science and Technology, 2017, 63: 101-109. doi: 10.1016/j.ast.2016.12.027
    [8] WANG R H, LI Y Z, QIAO X G. Recent advances in multidimensional fiber Bragg grating accelerometers[J]. Journal of Lightwave Technology, 2023, 41(13): 4238-4247. doi: 10.1109/JLT.2023.3241953
    [9] WEI L, JIANG D ZH, YU L L, et al. A novel miniaturized fiber Bragg grating vibration sensor[J]. IEEE Sensors Journal, 2019, 19(24): 11932-11940. doi: 10.1109/JSEN.2019.2936596
    [10] 徐国权, 熊代余. 光纤光栅传感技术在工程中的应用[J]. 中国光学,2013,6(3):306-317.

    XU G Q, XIONG D Y. Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics, 2013, 6(3): 306-317. (in Chinese).
    [11] LI T L, GUO J X, TAN Y G, et al. Recent advances and tendency in fiber Bragg grating-based vibration sensor: a review[J]. IEEE Sensors Journal, 2020, 20(20): 12074-12087. doi: 10.1109/JSEN.2020.3000257
    [12] 吴晶, 吴晗平, 黄俊斌, 等. 光纤光栅传感信号解调技术研究进展[J]. 中国光学,2014,7(4):519-531.

    WU J, WU H P, HUANG J B, et al. Research progress in signal demodulation technology of fiber Bragg grating sensors[J]. Chinese Optics, 2014, 7(4): 519-531. (in Chinese).
    [13] FAN X Y, GE L, GE CH, et al. A dual oblique wing-based low-frequency FBG accelerometer[J]. Optical Fiber Technology, 2023, 81: 103526. doi: 10.1016/j.yofte.2023.103526
    [14] ZHAO X F, JIA ZH A, FAN W, et al. A fiber Bragg grating acceleration sensor with temperature compensation[J]. Optik, 2021, 241: 166993. doi: 10.1016/j.ijleo.2021.166993
    [15] YAO H ZH, LI Y Q, YANG Z. A novel fiber Bragg grating acceleration sensor for measurement of vibration[J]. Optik, 2016, 127(20): 8874-8882. doi: 10.1016/j.ijleo.2016.06.105
    [16] ZHANG F X, JIANG SH D, WANG C, et al. Broadband and high sensitivity FBG accelerometer based on double diaphragms and h-shaped hinges[J]. IEEE Sensors Journal, 2021, 21(1): 353-359. doi: 10.1109/JSEN.2020.3013611
    [17] FAN W, WEN J, GAO H, et al. Low-frequency fiber Bragg grating accelerometer based on diaphragm-type cantilever[J]. Optical Fiber Technology, 2022, 70: 102888. doi: 10.1016/j.yofte.2022.102888
    [18] 宋颖, 张浩然, 李剑芝, 等. 基于轴承和柔性铰链的布拉格光纤光栅加速度计[J]. 中国光学(中英文),2023,16(5):1109-1120. doi: 10.37188/CO.2022-0252

    SONG Y, ZHANG H R, LI J ZH, et al. Fiber Bragg grating accelerometer based on flexure hinge and bearing[J]. Chinese Optics, 2023, 16(5): 1109-1120. (in Chinese). doi: 10.37188/CO.2022-0252
    [19] SONG H, SONG E ZH, PENG W, et al. Miniature structure optimization of small-diameter FBG-based one-dimensional optical fiber vibration sensor[J]. IEEE Sensors Journal, 2021, 21(23): 26763-26771. doi: 10.1109/JSEN.2021.3120139
    [20] YAN B, LIANG L. A novel fiber Bragg grating accelerometer based on parallel double flexible hinges[J]. IEEE Sensors Journal, 2020, 20(9): 4713-4718. doi: 10.1109/JSEN.2019.2925017
    [21] SHAO M, LIANG J J, GAO H, et al. Medium and low frequency fiber Bragg grating acceleration sensor based on single-sided single-arc hinge[J]. Optical Fiber Technology, 2022, 69: 102814. doi: 10.1016/j.yofte.2021.102814
    [22] ZHANG L, LIU M Y, HONG L, et al. Design and optimization of an FBG accelerometer based on single-notch circular flexure hinge for medium-frequency vibration measurement[J]. IEEE Sensors Journal, 2022, 22(21): 20303-20311. doi: 10.1109/JSEN.2022.3207780
    [23] LUO X D, LI Y F, FENG D Q, et al. Fiber Bragg grating accelerometer based on symmetrical double flexure hinges[J]. Optical Fiber Technology, 2022, 68: 102795. doi: 10.1016/j.yofte.2021.102795
    [24] LE H D, CHIANG C C, NGUYEN C N, et al. A 2-D Fiber Bragg grating acceleration sensor based on circular flexure hinges structure[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 7004411.
  • 加载中
图(9)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  118
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-12
  • 修回日期:  2024-04-30
  • 录用日期:  2024-06-25
  • 网络出版日期:  2024-08-21

目录

    /

    返回文章
    返回
    Baidu
    map