留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双观测器的拼接弧线电机改进积分滑模控制策略

曹兆锦 宋晓莉 范壬秋 张超

曹兆锦, 宋晓莉, 范壬秋, 张超. 基于双观测器的拼接弧线电机改进积分滑模控制策略[J]. 188bet网站真的吗 . doi: 10.37188/CO.2024-0085
引用本文: 曹兆锦, 宋晓莉, 范壬秋, 张超. 基于双观测器的拼接弧线电机改进积分滑模控制策略[J]. 188bet网站真的吗 . doi: 10.37188/CO.2024-0085
CAO Zhao-jin, SONG Xiao-li, FAN Ren-Qiu, ZHANG Chao. Improved integral sliding mode control strategy for SAPMSM based on dual observer[J]. Chinese Optics. doi: 10.37188/CO.2024-0085
Citation: CAO Zhao-jin, SONG Xiao-li, FAN Ren-Qiu, ZHANG Chao. Improved integral sliding mode control strategy for SAPMSM based on dual observer[J]. Chinese Optics. doi: 10.37188/CO.2024-0085

基于双观测器的拼接弧线电机改进积分滑模控制策略

cstr: 32171.14.CO.2024-0085
基金项目: 国家自然科学基金面上项目(No. 12373096,No. 11673045)
详细信息
    作者简介:

    宋晓莉(1978—),女,河南平西人,博士,副研究员,2012年于中国科学院大学获得博士学位,主要从事大型望远镜机架精密驱动控制方面的研究。E-mail:xlsong@niaot.ac.cn

  • 中图分类号: TH751

Improved integral sliding mode control strategy for SAPMSM based on dual observer

Funds: Supported by The National Natural Science Foundation of China (No. 12373096, No. 11673045)
More Information
  • 摘要:

    拼接弧线电机凭借其高转矩比和低速稳定运行等优点,为大口径天文望远镜观测提供了高性能驱动技术支持。电机运行过程中存在的如参数畸变、谐波等其他内外部干扰,都对提高电机性能提出了挑战。因此,本文提出一种基于新型趋近律的积分滑模控制器,同时结合扩张状态观测器与负载观测器的混合控制策略,旨在优化传统滑模控制并增强系统的抗干扰能力。传统趋近律参数较为繁杂且不能很好地抑制抖振,新型的趋近律简化了参数,有效克服了系统抖振。其次,采用扩张状态观测器对反馈转速进行估计,然后结合q轴电流信息和估计的精确转速数据作为负载转矩观测器输入,进一步提高了负载观测性能,并将负载观测值转换为电流进行前馈补偿,用以提高电机的抗干扰性能。仿真和实验结果表明:所提出的双观测器方法能够精确观测电机的转速和负载,显著增强了电机的抗负载扰动能力;同时,采用新型滑模速度控制器降低了电机转速超调量,并在一定程度上抑制了滑模抖振,为弧线电机在大口径天文望远镜的高精度观测应用提供了理论和实验支持。

     

  • 图 1  双观测器结构

    Figure 1.  Dual observer structure

    图 2  滑模速度控制器结构图

    Figure 2.  Structral diagram of sliding mode speed controller

    图 3  工况一下两种控制策略转速输出仿真结果对比

    Figure 3.  Comparison of simulation results of speed output of two control schemes under working condition 1

    图 4  工况一条件下q轴电流输出仿真结果

    Figure 4.  Simulation results of q-axis current output under working condition 1

    图 5  工况一条件下d轴电流输出仿真结果

    Figure 5.  Simulation results of q-axis current output under working condition 1

    图 6  工况二条件下两种控制策略的转速输出仿真结果对比

    Figure 6.  Comparison of simulation results of speed output of two control schemes under working condition 2

    图 7  工况二条件下q轴电流输出仿真结果

    Figure 7.  Comparison of simulation results of speed output under working condition 2

    图 8  工况二条件下d轴电流输出仿真结果

    Figure 8.  Simulation results of d-axis current output under working condition 2

    图 9  大型天文望远镜电控实验平台

    Figure 9.  Electronic control experimental platform of large-apertorre astronomical telescope

    图 10  单负载观测实验结果

    Figure 10.  Single load observation experiment results

    图 11  双负载观测实验结果

    Figure 11.  Dual load observation experiment results

    图 12  传统滑模控制下的实际转速和估计转速

    Figure 12.  Actual speed and estimated speed under traditional sliding mode control

    图 13  改进滑模+双观测器控制下的实际转速和估计转速

    Figure 13.  Actual speed and estimated speed under improved sliding mode control + dual observer control

    表  1  拼接弧线电机参数

    Table  1.   Parameters of the SAPMSM

    参数 数值
    极对数$p$ 200
    定子电阻${R_s}/\Omega$ 20
    d轴电感${L_{\text{d}}}/{\text{H}}$ 1.2
    q轴电感${L_{\text{q}}}/{\text{H}}$ 1.2
    转动惯量$J/({\text{Kg}} \cdot {{\text{m}}^{\text{2}}})$ 18000
    永磁体磁链${\psi _{\text{f}}}/{\text{Wb}}$ 3.5
    母线电压${U_{{\text{dc}}}}/{\text{V}}$ 300
    下载: 导出CSV
    Baidu
  • [1] 霍银龙, 杨飞, 王富国. 大口径光学望远镜拼接镜面关键技术综述[J]. 中国光学(中英文),2022,15(5):973-982. doi: 10.37188/CO.2022-0109

    HUO Y L, YANG F, WANG F G. Overview of key technologies for segmented mirrors of large-aperture optical telescopes[J]. Chinese Optics, 2022, 15(5): 973-982. (in Chinese). doi: 10.37188/CO.2022-0109
    [2] SONG X L, CAO ZH J. Research on control strategy of hamiltonian theory for large telescope based on SAPMSM[J]. IEEE Access, 2024, 12: 31960-31967. doi: 10.1109/ACCESS.2024.3368880
    [3] 朱泳廷, 张泽. 基于音圈电机的柔性杆自抗扰LQR抑振控制算法研究[J]. 振动与冲击,2023,42(22):283-292.

    ZHU Y T, ZHANG Z. Algorithm for the LQR active disturbance rejection control of a flexible beam for vibration suppression based on voice coil motors[J]. Journal of Vibration and Shock, 2023, 42(22): 283-292. (in Chinese).
    [4] ZHAO X M, GONG Y W, JIN H Y, et al. Adaptive super-twisting-based nonsingular fast terminal sliding mode control of permanent magnet linear synchronous motor[J]. Transactions of the Institute of Measurement and Control, 2023, 45(16): 3057-3066. doi: 10.1177/01423312231162782
    [5] SUN Y P, LAN Y P, SHI X L, et al. Variable speed sliding mode control of magnetic suspension linear synchronous motor based on feedback linearization[J]. Journal of Mechanical Science and Technology, 2023, 37(11): 5843-5853. doi: 10.1007/s12206-023-1023-3
    [6] ZHOU N, DENG W X, YANG X W, et al. Continuous adaptive integral recursive terminal sliding mode control for DC motors[J]. International Journal of Control, 2023, 96(9): 2190-2200. doi: 10.1080/00207179.2022.2086928
    [7] MOGHANNI-BAVIL-OLYAEI M R, KEIGHOBADI J, GHANBARI A, et al. Passivity-based hierarchical sliding mode control/observer of underactuated mechanical systems[J]. Journal of Vibration and Control, 2023, 29(13-14): 3096-3111. doi: 10.1177/10775463221091035
    [8] WU Y Q, YU J B, ZHANG ZH C. Output feedback regulation control for a class of cascade nonlinear systems by time-varying Kalman observer[J]. International Journal of Robust and Nonlinear Control, 2019, 29(7): 2149-2170. doi: 10.1002/rnc.4485
    [9] YUE B Y, CHENG Q M, CHENG Y M. Robustness improvement model predictive control strategy based on Luenberger observer for Y-type modular multilevel converter[J]. International Journal of Circuit Theory and Applications, 2023, 51(12): 5672-5690. doi: 10.1002/cta.3731
    [10] LU E, LI W, YANG X F, et al. Anti-disturbance speed control of low-speed high-torque PMSM based on second-order non-singular terminal sliding mode load observer[J]. ISA Transactions, 2019, 88: 142-152. doi: 10.1016/j.isatra.2018.11.028
    [11] LI ZH, FENG SH D, WANG J S, et al. Design of model-free position controller for PMSLM based on hyperlocal model[J]. Electrical Engineering, 2023, 105(4): 2361-2372. doi: 10.1007/s00202-023-01813-7
    [12] SHU H Y, GUO CH, SONG Y T, et al. Design of model predictive controllers for PMSM drive system based on the extended Kalman filter observer[J]. International Journal of Electric and Hybrid Vehicles, 2019, 11(4): 378-394. doi: 10.1504/IJEHV.2019.102887
    [13] SUN ZH Y, TAN C, LI B, et al. Dual model predictive control strategy of direct-drive PMSM based on sliding mode disturbance observer[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2024, 19(4): 527-534. doi: 10.1002/tee.24001
    [14] LIU H X, MEI K Q, LIU L, et al. Fixed-time non-singular terminal sliding mode control for PMSM drive systems[J]. Journal of Power Electronics, 2024, 24(2): 258-268. doi: 10.1007/s43236-023-00727-8
    [15] LIU L, LIU Y X, ZHOU L L, et al. Cascade ADRC with neural network-based ESO for hypersonic vehicle[J]. Journal of the Franklin Institute, 2023, 360(12): 9115-9138. doi: 10.1016/j.jfranklin.2022.09.019
    [16] 张海洋, 许海平, 方程, 等. 基于负载转矩观测器的直驱式永磁同步电机新型速度控制器设计[J]. 电工技术学报,2018,33(13):2923-2934.

    ZHANG H Y, XU H P, FANG CH, et al. Design of a novel speed controller for direct-drive permanent magnet synchronous motor based on load torque observer[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 2923-2934. (in Chinese).
    [17] 王东辉, 孔国利, 陈书立. 采用滑模观测器的机载金宝搏188软件怎么用 通信视轴精度控制[J]. 红外与金宝搏188软件怎么用 工程,2022,51(3):20210460. doi: 10.3788/IRLA20210460

    WANG D H, KONG G L, CHEN SH L. Precision control of airborne laser communication optical axis using sliding mode observer[J]. Infrared and Laser Engineering, 2022, 51(3): 20210460. (in Chinese). doi: 10.3788/IRLA20210460
    [18] ZHANG ZH C, LI L, WU Y Q. Disturbance-observer-based antiswing control of underactuated crane systems via terminal sliding mode[J]. IET Control Theory & Applications, 2018, 12(18): 2588-2594.
    [19] MA H F, LI Y M, XIONG ZH H. Discrete-time sliding-mode control with enhanced power reaching law[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4629-4638. doi: 10.1109/TIE.2018.2864712
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  101
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-07
  • 录用日期:  2024-07-23
  • 网络出版日期:  2024-08-21

目录

    /

    返回文章
    返回
    Baidu
    map