留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于跨域交互注意力和对比学习引导的红外与可见光图像融合

邸敬 梁婵 刘冀钊 廉敬

邸敬, 梁婵, 刘冀钊, 廉敬. 基于跨域交互注意力和对比学习引导的红外与可见光图像融合[J]. 188bet网站真的吗 . doi: 10.37188/CO.2024-0147
引用本文: 邸敬, 梁婵, 刘冀钊, 廉敬. 基于跨域交互注意力和对比学习引导的红外与可见光图像融合[J]. 188bet网站真的吗 . doi: 10.37188/CO.2024-0147
DI Jing, LIANG Chan, LIU Ji-zhao, LIAN Jing. Infrared and visible image fusion guided by cross-domain interactive attention and contrast learning[J]. Chinese Optics. doi: 10.37188/CO.2024-0147
Citation: DI Jing, LIANG Chan, LIU Ji-zhao, LIAN Jing. Infrared and visible image fusion guided by cross-domain interactive attention and contrast learning[J]. Chinese Optics. doi: 10.37188/CO.2024-0147

基于跨域交互注意力和对比学习引导的红外与可见光图像融合

cstr: 32171.14.CO.2024-0147
基金项目: 甘肃省自然科学基金项目(No. 24JRRA231);国家自然科学基金(No. 62061023);甘肃省杰出青年基金资助项目(No. 21JR7RA345)
详细信息
    作者简介:

    邸 敬(1979—),女,甘肃兰州人,副教授,硕士生导师,主要从事图像检测识别、 信号处理技术和宽带无线通信方面的研究。E-mail:46891771@qq.com

  • 中图分类号: TP394.1;TH691.9

Infrared and visible image fusion guided by cross-domain interactive attention and contrast learning

Funds: Supported by
More Information
  • 摘要:

    针对现有红外与可见光图像融合方法难以充分提取和保留源图像细节信息与对比度,纹理细节模糊等问题,提出了一种跨域交互注意力和对比学习引导的红外与可见光图像融合方法。首先,设计了双支路跳跃连接的细节增强网络,从红外和可见光图像中分别提取和增强细节信息,并利用跳跃连接避免信息丢失,生成增强后的细节图像。接着,构建了联合双分支编码器和跨域交互注意力模块的图像融合网络,确保特征融合时充分特征交互,并通过解码器重建为最终的融合图像。然后,引入了从对比学习块进行浅层和深层的属性和内容的对比学习网络,优化特征表示,进一步提升图像融合网络的性能。最后,为了约束网络训练以保留源图像的固有特征,设计了一种基于对比约束的损失函数,以辅助融合过程对源图像信息的对比保留。将提出方法与当前前沿融合方法进行了定性和定量的分析比较,实验结果表明,本文方法的8项客观评价指标在TNO、MSRS、RoadSence数据集上均比对照方法有显著提升。本文方法融合后图像具有丰富的细节纹理、显著的清晰度和对比度,有效提高了道路交通、安防监控等实际应用中的目标识别和环境感知能力。

     

  • 图 1  网络整体框架图

    Figure 1.  Overall framework diagram of the network

    图 2  双支路跳跃连接的细节增强网络架构

    Figure 2.  Detail-enhanced network architecture with dual-branch hopping connections

    图 3  双分支联合编码器的图像融合网络架构

    Figure 3.  Image fusion network architecture with dual-branch joint encoder

    图 4  属性和内容的对比学习网络框架

    Figure 4.  Network framework for comparative learning of attributes and content

    图 5  跨域交互注意力机制模块

    Figure 5.  Cross-domain interaction attention module

    图 6  TNO数据集七组场景的融合结果

    Figure 6.  Fusion results for six groups of scenes in the TNO

    图 7  MSRS数据集日间场景“00537D”融合结果

    Figure 7.  MSRS dataset daytime scene “00537D” fusion results

    图 8  MSRS数据集夜间场景“00881N”融合结果

    Figure 8.  MSRS dataset night scene “00881N” fusion results

    图 9  RoadSence数据集“FLIR_08835”场景融合结果

    Figure 9.  RoadSence “FLIR_08835” fusion results

    图 10  消融实验结果

    Figure 10.  Results of ablation experiments

    表  1  TNO数据集42组图像的客观评价指标均值

    Table  1.   Mean values of objective evaluation indices for 42 groups of images in the TNO

    方法评价指标
    AGENSDVIFSFMIPSNRSSIMTime
    RFN-Nest2.6696.96336.8970.5595.8742.11362.1930.6490.249
    U2Fusion5.0236.99737.6970.61911.8642.00562.8080.6050.354
    PIAFusion3.8286.81437.1410.7409.6203.35261.7760.4680.682
    SuperFusion2.4216.55830.6630.4226.2752.33060.9790.7530.715
    SwinFusion3.5606.81934.8250.6588.9852.29762.5770.6860.553
    SeAFusion4.9807.13344.2440.70412.2532.83361.3920.6280.604
    TarDAL2.9986.84045.2120.5397.9592.80262.3040.5973.159
    DIVFusion5.5607.59347.5260.62513.4632.21759.9790.4082.149
    DDFM5.1116.85437.0810.62912.9522.04863.4660.6183.517
    LRRNet3.6006.83839.4990.5519.3312.51562.6560.5460.927
    SFCFusion4.3246.70031.2970.67511.4011.99763.1330.6872.578
    Coconet4.6126.69533.6690.57811.6432.25662.1500.7581.597
    本文方法5.6017.44350.8790.79214.7423.37462.8750.8310.593
    下载: 导出CSV

    表  2  MSRS数据集40组图像的客观评价指标均值

    Table  2.   Mean value of objective evaluation indices for 40 groups of images in MSRS

    方法评价指标
    AGENSDVIFSFMIPSNRSSIMTime
    RFN-Nest1.5575.20925.9760.5554.7252.49867.1230.5650.428
    U2Fusion2.4095.33225.3030.5557.7092.24466.5990.5950.536
    PIAFusion3.5986.53646.2631.00810.9453.82564.4640.5450.892
    SuperFusion3.5986.46843.4690.9139.4643.99964.8510.5450.874
    SwinFusion3.5986.49144.2090.9139.7124.17364.8210.5450.724
    SeAFusion3.5986.54742.9020.95210.0473.77664.5700.5810.647
    TarDAL3.5983.31226.7920.16213.9731.24563.5440.2784.589
    DIVFusion4.3137.40654.2280.78411.5752.54556.3140.2433.248
    DDFM1.8485.64221.1440.5615.9222.41467.0880.7053.774
    LRRNet3.5086.78025.9760.85210.0583.20258.7590.6851.938
    SFCFusion3.7595.93330.8360.63611.4072.00266.7880.5262.549
    Coconet2.1145.58630.8360.3996.7272.09065.1100.6322.874
    本文方法4.7317.33156.8911.13813.2164.21566.8210.7320.698
    下载: 导出CSV

    表  3  RoadSence数据集221组图像的客观评价指标均值

    Table  3.   Mean value of objective evaluation indices for 221 groups of images in RoadSence

    方法 评价指标
    AG EN SD VIF SF MI PSNR SSIM Time
    RFN-Nest 3.362 7.336 46.025 0.500 7.852 2.738 61.366 0.617 0.357
    U2Fusion 6.099 7.183 40.092 0.564 15.282 2.578 61.366 0.696 0.684
    PIAFusion 4.308 6.981 42.702 0.681 12.132 3.557 61.680 0.659 0.534
    SuperFusion 4.469 6.990 41.358 0.608 12.185 3.562 62.107 0.566 0.824
    SwinFusion 4.516 7.000 44.067 0.614 16.720 3.334 61.297 0.529 0.545
    SeAFusion 6.491 7.330 49.645 0.600 16.625 3.022 61.714 0.584 0.657
    TarDAL 6.691 7.550 59.398 0.418 16.123 2.191 59.566 0.552 3.924
    DIVFusion 5.010 7.539 54.188 0.572 13.295 2.900 61.779 0.441 2.842
    DDFM 3.952 6.868 33.551 0.532 10.174 2.845 64.484 0.660 3.667
    LRRNet 5.692 7.526 54.772 0.631 15.223 3.510 62.025 0.730 1.259
    SFCFusion 6.304 7.222 41.496 0.591 15.994 2.842 63.781 0.670 1.842
    Coconet 4.407 7.059 37.356 0.577 11.417 2.896 64.440 0.728 2.067
    本文方法 6.924 7.596 60.891 0.703 16.810 4.027 62.303 0.804 0.573
    下载: 导出CSV

    表  4  10组场景消融实验客观评价指标均值

    Table  4.   Mean values of objective evaluation indices in 10 groups of ablation experiment scenes

    模型AGENSDVIFSFMIPSNRSSIM
    实验17.3287.24852.3140.65216.2573.62854.2170.766
    实验25.6286.99548.3020.56318.0053.49557.4570.501
    实验36.7157.13745.5410.58918.1863.21456.2590.627
    实验46.3577.03350.2490.63717.8943.45557.2240.643
    实验57.7807.32452.4130.63317.9243.52758.1490.702
    本文方法8.3267.42161.6720.70918.2593.98959.2480.791
    下载: 导出CSV
    Baidu
  • [1] ARCHANA R, JEEVARAJ P S E. Deep learning models for digital image processing: a review[J]. Artificial Intelligence Review, 2024, 57(1): 11. doi: 10.1007/s10462-023-10631-z
    [2] LI H, WU X J. CrossFuse: a novel cross attention mechanism based infrared and visible image fusion approach[J]. Information Fusion, 2024, 103: 102147. doi: 10.1016/j.inffus.2023.102147
    [3] YANG B, HU Y X, LIU X W, et al. CEFusion: an infrared and visible image fusion network based on cross-modal multi-granularity information interaction and edge guidance[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 17794-17809. doi: 10.1109/TITS.2024.3426539
    [4] NAHATA D, OTHMAN K, NAHATA D, et al. Exploring the challenges and opportunities of image processing and sensor fusion in autonomous vehicles: a comprehensive review[J]. AIMS Electronics and Electrical Engineering, 2023, 7(4): 271-321. doi: 10.3934/electreng.2023016
    [5] 程博阳, 李婷, 王喻林. 基于视觉显著性加权与梯度奇异值最大的红外与可见光图像融合[J]. 中国光学(中英文),2022,15(4):675-688. doi: 10.37188/CO.2022-0124

    CHENG B Y, LI T, WANG Y L. Fusion of infrared and visible light images based on visual saliency weighting and maximum gradient singular value[J]. Chinese Optics, 2022, 15(4): 675-688. (in Chinese). doi: 10.37188/CO.2022-0124
    [6] ZHANG Y M, LEE H J. Infrared and visible image fusion based on multi-scale decomposition and texture preservation model[C]. Proceedings of 2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), IEEE, 2021: 335-339.
    [7] GAO M L, ZHOU Y N, ZHAI W ZH, et al. SaReGAN: a salient regional generative adversarial network for visible and infrared image fusion[J]. Multimedia Tools and Applications, 2023, 83(22): 61659-61671. doi: 10.1007/s11042-023-14393-2
    [8] LI X L, LI Y F, CHEN H J, et al. RITFusion: reinforced interactive transformer network for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5000916.
    [9] CHEN J, LI X J, LUO L B, et al. Infrared and visible image fusion based on target-enhanced multiscale transform decomposition[J]. Information Sciences, 2020, 508: 64-78. doi: 10.1016/j.ins.2019.08.066
    [10] 刘先红, 陈志斌, 秦梦泽. 结合引导滤波和卷积稀疏表示的红外与可见光图像融合[J]. 光学 精密工程,2018,26(5):1242-1253. doi: 10.3788/OPE.20182605.1242

    LIU X H, CHEN ZH B, QIN M Z. Infrared and visible image fusion using guided filter and convolutional sparse representation[J]. Optics and Precision Engineering, 2018, 26(5): 1242-1253. (in Chinese). doi: 10.3788/OPE.20182605.1242
    [11] LI Y H, LIU G, BAVIRISETTI D P, et al. Infrared-visible image fusion method based on sparse and prior joint saliency detection and LatLRR-FPDE[J]. Digital Signal Processing, 2023, 134: 103910. doi: 10.1016/j.dsp.2023.103910
    [12] LIU Y, CHEN X, WARD R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12): 1882-1886. doi: 10.1109/LSP.2016.2618776
    [13] PRABHAKAR K R, SRIKAR V S, VENKATESH BABU R. DeepFuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]. Proceedings of the 2017 IEEE International Conference on Computer Vision, IEEE, 2017: 4724-4732.
    [14] LI H, WU X J, DURRANI T. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9645-9656. doi: 10.1109/TIM.2020.3005230
    [15] LI H, WU X J, KITTLER J. RFN-Nest: an end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72-86. doi: 10.1016/j.inffus.2021.02.023
    [16] MA J Y, TANG L F, FAN F, et al. SwinFusion: cross-domain long-range learning for general image fusion via Swin transformer[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1200-1217. doi: 10.1109/JAS.2022.105686
    [17] ZHAO Z X, BAI H W, ZHANG J SH, et al. CDDFuse: correlation-driven dual-branch feature decomposition for multi-modality image fusion[C]. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2023: 5906-5916.
    [18] WANG X, GUAN ZH, QIAN W H, et al. CS2Fusion: contrastive learning for self-supervised infrared and visible image fusion by estimating feature compensation map[J]. Information Fusion, 2024, 102: 102039. doi: 10.1016/j.inffus.2023.102039
    [19] HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2020: 9726-9735.
    [20] XU H, MA J Y, JIANG J J, et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502-518. doi: 10.1109/TPAMI.2020.3012548
    [21] TANG L F, YUAN J T, ZHANG H, et al. PIAFusion: a progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83-84: 79-92. doi: 10.1016/j.inffus.2022.03.007
    [22] TANG L F, DENG Y X, MA Y, et al. SuperFusion: a versatile image registration and fusion network with semantic awareness[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12): 2121-2137. doi: 10.1109/JAS.2022.106082
    [23] TANG L F, YUAN J T, MA J Y. Image fusion in the loop of high-level vision tasks: a semantic-aware real-time infrared and visible image fusion network[J]. Information Fusion, 2022, 82: 28-42. doi: 10.1016/j.inffus.2021.12.004
    [24] LIU J Y, FAN X, HUANG ZH B, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2022: 5792-5801.
    [25] TANG L F, XIANG X Y, ZHANG H, et al. DIVFusion: darkness-free infrared and visible image fusion[J]. Information Fusion, 2023, 91: 477-493. doi: 10.1016/j.inffus.2022.10.034
    [26] ZHAO Z X, BAI H W, ZHU Y ZH, et al. DDFM: denoising diffusion model for multi-modality image fusion[C]. Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision, IEEE, 2023: 8048-8059.
    [27] LI H, XU T Y, WU X J, et al. LRRNet: a novel representation learning guided fusion network for infrared and visible images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 11040-11052. doi: 10.1109/TPAMI.2023.3268209
    [28] CHEN H R, DENG L, CHEN ZH X, et al. SFCFusion: spatial-frequency collaborative infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5011615.
    [29] LIU J Y, LIN R J, WU G Y, et al. CoCoNet: coupled contrastive learning network with multi-level feature ensemble for multi-modality image fusion[J]. International Journal of Computer Vision, 2024, 132(5): 1748-1775. doi: 10.1007/s11263-023-01952-1
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  46
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-11-12

目录

    /

    返回文章
    返回
    Baidu
    map