留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非标准相移轮廓术的最优条纹频率分配

季怡心 张龙祥 仵苇 王建华

季怡心, 张龙祥, 仵苇, 王建华. 非标准相移轮廓术的最优条纹频率分配[J]. 188bet网站真的吗 . doi: 10.37188/CO.2024-0163
引用本文: 季怡心, 张龙祥, 仵苇, 王建华. 非标准相移轮廓术的最优条纹频率分配[J]. 188bet网站真的吗 . doi: 10.37188/CO.2024-0163
JI Yi-xin, ZHANG Long-xiang, WU Wei, WANG Jian-hua. Optimal fringe frequency allocation for non-standard phase-shifting profilometry[J]. Chinese Optics. doi: 10.37188/CO.2024-0163
Citation: JI Yi-xin, ZHANG Long-xiang, WU Wei, WANG Jian-hua. Optimal fringe frequency allocation for non-standard phase-shifting profilometry[J]. Chinese Optics. doi: 10.37188/CO.2024-0163

非标准相移轮廓术的最优条纹频率分配

cstr: 32171.14.CO.2024-0163
基金项目: 山东省自然科学基金项目(No. ZR2021MF024)
详细信息
    作者简介:

    季怡心(2001—),女,山东德州人,硕士研究生,2023年于青岛理工大学获得学士学位,现就读青岛理工硕士。主要从事光学三维测量方面的研究。E-mail:jiyixin519@163.com

    王建华(1981—),男,山东临沂人,博士,副教授,硕士生导师,2004 年于中国地质大学获得学士学位,2011 年于中国矿业大学获得硕士学位,2019年于西安理工大学获得博士学位。主要从事计算机视觉、光学三维测量方面的研究。E-mail:wangjianhua@qut.edu.cn

  • 中图分类号: TP394.1;TH691.9

Optimal fringe frequency allocation for non-standard phase-shifting profilometry

Funds: Supported by the Natural Science Foundation of Shandong Province (No. ZR2021MF024)
More Information
  • 摘要:

    在相移轮廓术中,非标准相移轮廓术结合时域相位展开算法仅需较少的条纹图案,因而具备较高的测量效率。鉴于条纹频率对测量精度有显著影响,本文分析了非标准相移轮廓术的时域相位展开中的相位误差,并进一步评估其可靠性。研究发现,相位展开的可靠性与条纹频率分配密切相关。据此,本文引入了一种最优条纹频率分配策略。基于该策略,本文对非标准相移轮廓术的不同频率组合进行了对比实验,实验结果显示,相比于3fh1+2fh2+2fh3外差法的非最优频率组合,本文提出的频率组合的平均错误率降低了62.96%;相比于2fh+2fm+3fl分层法的非最优频率组合,本文提出的频率组合的平均错误率降低了49.23%。

     

  • 图 1  双频与三频TPU算法的重建结果对比。 (a) 3-step和{fh=64, fm=8, fl=1};(b) 3-step和{fh=64, fl=1};(c) 3fh+2fm+2fl和{fh=64, fm=8, fl=1};(d) 3fh+2fl和{fh=64, fl=1};

    Figure 1.  Comparison of reconstruction results between dual-frequency and triple-frequency TPU algorithms. (a) 3-step and {fh=64, fm=8, fl=1};(b) 3-step and {fh=64, fl=1};(c) 3fh+2fm+2fl and {fh=64, fm=8, fl=1};(d) 3fh+2fl and {fh=64, fl=1};

    图 2  3fh1+2fh2+2fh3算法的包裹相位误差方差

    Figure 2.  Wrapped phase error variances for 3fh1+2fh2+2fh3 algorithm

    图 3  仿真曲面的三维重建结果。(a) 仿真曲面(含放大图);(b) { fh=169, fm=13, fl=1};(c) { fh=169, fm=5, fl=1};(d) { fh=169, fm=20, fl=1}

    Figure 3.  The 3D reconstruction results of the simulated surface. (a) simulated surface (with magnified view); (b) { fh=169, fm=13, fl=1}; (c) { fh=169, fm=5, fl=1}; (d) { fh=169, fm=20, fl=1}

    图 4  3fh1+2fh2+2fh3外差TPU算法的重建结果比较。 (a) 3fh1+2fh2+2fh3和{fh1=153, fh2=148, fh3=144};(b) 3fh1+2fh2+2fh3和{fh1=153, fh2=143, fh3=134};(c) 3fh1+2fh2+2fh3和{fh1=153, fh2=133, fh3=114};(d) 12-step和{fh1=153, fh2=148, fh3=144};(e) 12-step和{fh1=fh1=153, fh2=143, fh3=134};(f) 12-step和{fh1=153, fh2=133, fh3=114};(g) 横截面对比(第600行);(h)为(g)的放大视图

    Figure 4.  Comparison of reconstruction results based on 3fh1+2fh2+2fh3 heterodyne TPU. (a) 3fh1+2fh2+2fh3 and {fh1=153, fh2=148, fh3=144}; (b) 3fh1+2fh2+2fh3 and {fh1=153, fh2=143, fh3=134}; (c) 3fh1+2fh2+2fh3 and {fh1=153, fh2=133, fh3=114}; (d) 12-step and {fh1=153, fh2=148, fh3=144}; (e) 12-step and {fh1=153, fh2=143, fh3=134}; (f) 12-step and {fh1=153, fh2=133, fh3=114}; (g) cross-sectional comparison (line 600); (h) larger view of (g)

    图 5  基于2fh+2fm+3fl分层TPU算法的重建结果比较。(a) 2fh+2fm+3fl和{fh=181, fm=6, fl=1};(b) 2fh+2fm+3fl和{ fh=181, fm=16, fl=1};(c) 2fh+2fm+3fl和{fh=181, fm=30, fl=1};(d) 12-step和{fh=181, fm=6, fl=1};(e) 12-step和{ fh=181, fm=16, fl=1}(f) 12-step和{fh=181, fm=30, fl=1};(g) 横截面对比(第170行);(h)为(g)的放大视图

    Figure 5.  Comparison of reconstruction results based on 2fh+2fm+3fl hierarchical TPU. (a) 2fh+2fm+3fl and {fh=181, fm=6, fl=1}; (b) 2fh+2fm+3fl and {fh=181, fm=16, fl=1}; (c) 2fh+2fm+3fl and {fh=181, fm=30, fl=1}; (d) 12-step and {fh=181, fm=6, fl=1}; (e)12-step and {fh=181, fm=16, fl=1}; (f) 12-step and {fh=181, fm=30, fl=1}; (g) cross-sectional comparison (line 170); (h) larger view of (g)

    表  1  非标准三频外差TPU的最优频率组合

    Table  1.   Optimal frequency combinations for non-standard triple-frequency heterodyne TPU

    fh1fh2fh3
    3fh1+2fh2+2fh3153143134
    2fh1+2fh2+3fh3160149139
    下载: 导出CSV

    表  2  非标准三频分层TPU的最优频率组合

    Table  2.   Optimal frequency combinations for non-standard triple-frequency hierarchical TPU

    fhfmfl
    3fh+2fm+2fl169131
    2fh+2fm+3fl181161
    下载: 导出CSV

    表  3  基于3fh1+2fh2+2fh3外差TPU算法的定量比较

    Table  3.   Quantitative comparison based on 3fh1+2fh2+2fh3 heterodyne TPU

    {fh1, fh2, fh3}Error rate/%RMSE/rad
    {153, 143, 134}11.7610.4789
    {153, 148, 144}30.4111.3039
    {153, 133, 114}33.1824.6249
    下载: 导出CSV

    表  4  基于2fh+2fm+3fl分层TPU的定量比较

    Table  4.   Quantitative comparison based on 2fh+2fm+3fl hierarchical TPU

    {fh, fm, fl}Error rate/%RMSE/rad
    {181, 16, 1}4.561.5398
    {181, 6, 1}15.413.9469
    {181, 30, 1}6.334.5043
    下载: 导出CSV
    Baidu
  • [1] 吴荣, 赵世丽, 赵洋, 等. 条纹投影用于不同景深物体的三维测量[J]. 红外与金宝搏188软件怎么用 工程,2022,51(11):20220088. doi: 10.3788/IRLA20220088

    WU R, ZHAO SH L, ZHAO Y, et al. Fringe projection profilometry for 3D measurement of objects with different depth of fields[J]. Infrared and Laser Engineering, 2022, 51(11): 20220088. (in Chinese). doi: 10.3788/IRLA20220088
    [2] ZUO CH, FENG SH J, HUANG L, et al. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 2018, 109: 23-59. doi: 10.1016/j.optlaseng.2018.04.019
    [3] FENG SH J, ZUO CH, ZHANG L, et al. Calibration of fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 2021, 143: 106622. doi: 10.1016/j.optlaseng.2021.106622
    [4] 王永红, 张倩, 胡寅, 等. 显微条纹投影小视场三维表面成像技术综述[J]. 中国光学,2021,14(3):447-457. doi: 10.37188/CO.2020-0199

    WANG Y H, ZHANG Q, HU Y, et al. 3D small-field surface imaging based on microscopic fringe projection profilometry: a review[J]. Chinese Optics, 2021, 14(3): 447-457. (in Chinese). doi: 10.37188/CO.2020-0199
    [5] GU Z M, FU J ZH, LIN H, et al. Development of 3D bioprinting: from printing methods to biomedical applications[J]. Asian Journal of Pharmaceutical Sciences, 2020, 15(5): 529-557. doi: 10.1016/j.ajps.2019.11.003
    [6] HU Y, CHEN Q, FENG SH J, et al. Microscopic fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 2020, 135: 106192. doi: 10.1016/j.optlaseng.2020.106192
    [7] GENG J. Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics, 2011, 3(2): 128-160. doi: 10.1364/AOP.3.000128
    [8] VAN DER JEUGHT S, DIRCKX J J J. Real-time structured light profilometry: a review[J]. Optics and Lasers in Engineering, 2016, 87: 18-31. doi: 10.1016/j.optlaseng.2016.01.011
    [9] 王霖, 韩旭, 伏燕军, 等. 用于三维测量的快速相位解包裹算法[J]. 应用光学,2019,40(2):271-277.

    WANG L, HAN X, FU Y J, et al. Fast phase unwrapping algorithm for 3D measurement[J]. Journal of Applied Optics, 2019, 40(2): 271-277. (in Chinese).
    [10] WANG L, YI L N, ZHANG Y T, et al. 3D reconstruction method based on N-step phase unwrapping[J]. The Visual Computer, 2024, 40(5): 3601-3613. doi: 10.1007/s00371-023-03054-y
    [11] SU X Y, CHEN W J. Reliability-guided phase unwrapping algorithm: a review[J]. Optics and Lasers in Engineering, 2004, 42(3): 245-261. doi: 10.1016/j.optlaseng.2003.11.002
    [12] 杨泽霖, 张启灿, 衷涵. 利用双频外差和时空相位展开实现三维测量[J]. 光学与光电技术,2023,21(1):46-56.

    YANG Z L, ZHANG Q C, ZHONG H. Three dimensional shape measurement using dual-frequency heterodyne and spatial-temporal Phase Unwrapping[J]. Optics & Optoelectronic Technology, 2023, 21(1): 46-56. (in Chinese).
    [13] ZUO CH, HUANG L, ZHANG M L, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 2016, 85: 84-103. doi: 10.1016/j.optlaseng.2016.04.022
    [14] ZHANG S. Absolute phase retrieval methods for digital fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 2018, 107: 28-37. doi: 10.1016/j.optlaseng.2018.03.003
    [15] WU H T, CAO Y P, AN H H, et al. A novel phase-shifting profilometry to realize temporal phase unwrapping simultaneously with the least fringe patterns[J]. Optics and Lasers in Engineering, 2022, 153: 107004. doi: 10.1016/j.optlaseng.2022.107004
    [16] 张昂, 孙亚琴, 高楠, 等. 三灰度编码相位展开方法条纹投影轮廓术[J]. 光学 精密工程,2022,30(5):518-526. doi: 10.37188/OPE.20223005.0518

    ZHANG A, SUN Y Q, GAO N, et al. Fringe projection profilometry by ternary-gray encoded phase unwrapping method[J]. Optics and Precision Engineering, 2022, 30(5): 518-526. (in Chinese). doi: 10.37188/OPE.20223005.0518
    [17] OCHOA N A. Fringe analysis with a two-step phase shifting method based on local Lissajous ellipse fitting[J]. Optics Communications, 2021, 483: 126647. doi: 10.1016/j.optcom.2020.126647
    [18] 李乐阳, 吴周杰, 张启灿. 基于相移条纹分析的相位误差补偿技术发展综述(特邀)[J]. 金宝搏188软件怎么用 与光电子学进展,2024,61(2):0211008.

    LI Y Y, WU ZH J, ZHANG Q C. Phase error compensation technique based on phase-shifting fringe analysis: a review (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(2): 0211008. (in Chinese).
    [19] 王一, 王祎泽, 邾继贵. 光学相控器件调制误差对干涉投影条纹的影响[J]. 金宝搏188软件怎么用 与红外,2016,46(7):852-856.

    WANG Y, WANG Y Z, ZHU J G. Influence of modulation error of optical phase control device on interference projection fringe[J]. Laser & Infrared, 2016, 46(7): 852-856. (in Chinese).
    [20] LI J L, HASSEBROOK L G, GUAN CH. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity[J]. Journal of the Optical Society of America A, 2003, 20(1): 106-115. doi: 10.1364/JOSAA.20.000106
    [21] 刘路, 潘艳娟, 奚冬冬, 等. 相位编码条纹投影轮廓术的相位展开误差校正方法[J]. 应用光学,2020,41(5):978-983. doi: 10.5768/JAO202041.0502007

    LIU L, PAN Y J, XI D D, et al. Phase unwrapping errors correction for phase-encoding based on fringe projection profilometry[J]. Journal of Applied Optics, 2020, 41(5): 978-983. (in Chinese). doi: 10.5768/JAO202041.0502007
    [22] 侯艳丽, 梁瀚钢, 李付谦, 等. 相位测量轮廓术中时空结合的三频相位展开[J]. 光学学报,2022,42(1):0112006. doi: 10.3788/AOS202242.0112006

    HOU Y L, LIANG H G, LI F Q, et al. Spatial-temporal combined phase unwrapping in phase measurement profilometry[J]. Acta Optica Sinica, 2022, 42(1): 0112006. (in Chinese). doi: 10.3788/AOS202242.0112006
    [23] CAI Z W, LIU X L, JIANG H, et al. Flexible phase error compensation based on Hilbert transform in phase shifting profilometry[J]. Optics Express, 2015, 23(19): 25171-25181. doi: 10.1364/OE.23.025171
    [24] WANG J, WU ZH X, HUANG Y Y, et al. A rapid and accurate gamma compensation method based on double response curve fitting for high-quality fringe pattern generation[J]. Optics & Laser Technology, 2023, 160: 109084.
    [25] BING P, QIAN K M, LEI H, et al. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry[J]. Optics Letters, 2009, 34(4): 416-418. doi: 10.1364/OL.34.000416
    [26] LIU K, WANG Y CH, LAU D L, et al. Gamma model and its analysis for phase measuring profilometry[J]. Journal of the Optical Society of America A, 2010, 27(3): 553-562. doi: 10.1364/JOSAA.27.000553
    [27] ZHANG X, ZHU L M, LI Y F, et al. Generic nonsinusoidal fringe model and gamma calibration in phase measuring profilometry[J]. Journal of the Optical Society of America A, 2012, 29(6): 1047-1058. doi: 10.1364/JOSAA.29.001047
    [28] ZUO CH, CHEN Q, GU G H, et al. Optimized three-step phase-shifting profilometry using the third harmonic injection[J]. Optica Applicata, 2013, 43(2): 393-408.
    [29] PETKOVIĆ T, PRIBANIĆ T, ZORAJA D. Selection of optimal frequencies in multiple-frequency fringe projection profilometry[J]. Optics and Lasers in Engineering, 2023, 163: 107455. doi: 10.1016/j.optlaseng.2022.107455
    [30] ZHU J P, FENG X Y, ZHU CH H, et al. Optimal frequency selection for accuracy improvement in binary defocusing fringe projection profilometry[J]. Applied Optics, 2022, 61(23): 6897-6904. doi: 10.1364/AO.464506
    [31] ZHANG M L, CHEN Q, TAO T Y, et al. Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection[J]. Optics Express, 2017, 25(17): 20381-20400. doi: 10.1364/OE.25.020381
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  21
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 录用日期:  2024-11-07
  • 网络出版日期:  2024-11-27

目录

    /

    返回文章
    返回
    Baidu
    map