留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

All-solid-state acousto-optic mode-locked laser operating at 660 nm

WANG Yu-ning,ZHENG Quan,SU Xin,BAI Zhong-shu,ZHANG Xiu-qi,LIU Chao-zhi,LIU Wei

downloadPDF
王禹凝, 郑权, 苏鑫, 柏中树, 张秀齐, 刘超智, 刘薇. 基于声光锁模全固态660 nm 器[J]. . doi: 10.37188/CO.EN-2023-0013
引用本文: 王禹凝, 郑权, 苏鑫, 柏中树, 张秀齐, 刘超智, 刘薇. 基于声光锁模全固态660 nm 器[J]. .doi:10.37188/CO.EN-2023-0013
WANG Yu-ning, ZHENG Quan, SU Xin, BAI Zhong-shu, ZHANG Xiu-qi, LIU Chao-zhi, LIU Wei. All-solid-state acousto-optic mode-locked laser operating at 660 nm[J]. Chinese Optics. doi: 10.37188/CO.EN-2023-0013
Citation: WANG Yu-ning, ZHENG Quan, SU Xin, BAI Zhong-shu, ZHANG Xiu-qi, LIU Chao-zhi, LIU Wei. All-solid-state acousto-optic mode-locked laser operating at 660 nm[J].Chinese Optics.doi:10.37188/CO.EN-2023-0013

基于声光锁模全固态660 nm 器

详细信息
  • 中图分类号:O432.1+2

All-solid-state acousto-optic mode-locked laser operating at 660 nm

doi:10.37188/CO.EN-2023-0013
Funds:Supported by Science and Technology Development Plan Project of Jilin Province, China (No. 20210201004GX)
More Information
    Author Bio:

    WANG Yu-ning (1986 —), male, senior engineer, born in Changchun, Jilin Province. He recieved his B.S. and M.S. from Changchun University of Science and Technology, in 2009 and 2012, respectively, and is now working as an R & D manager in Changchun New Industries Optoelectronics Technology Co., Ltd. His main research areas are laser physics and new type lasers. E-mail:wangyn@cnilaser.com

    SU Xin (1991 —), male, engineer, born in Changchun, Jilin Province. He received his bachelor's degree from Changchun University of Science and Technology in 2014. He is mainly engaged in the research of all-solid-state laser and nonlinear optical frequency conversion technology. E-mail:suxin@cnilaser.com

    Corresponding author:suxin@cnilaser.com
  • 摘要:

    脉冲宽度为皮秒的红光 器,具有脉冲宽度窄,峰值功率高的优点,使其在工业、医疗、科研和信息存储等方向具有广泛的应用。本文采用声光锁模(AOML)的方式设计了一款具有线宽窄、转换效率高,输出波长为660 nm的全固态皮秒 器。 器采用半导体侧面泵浦的方式,通过仔细优化谐振腔型,并使用两块LiB3O5( LBO )晶体进行腔外倍频,最终获得最大输出功率为8.6 W的660 nm 输出。其中锁模脉冲的频率为100 MHz,脉冲宽度为887 ps。1319 nm至660 nm 的倍频转换效率可达41%。

  • Figure 1.Schematic for mode-locked pulsed Nd:YAG/LBO red laser.M1–M6, 45° high-reflection (HR) coating at 1319 nm; M7-M10 concave mirrors; M11, 45° HR at 1319 nm and anti-reflection (AR) coating at 660 nm; L1, L2, lens; LM1–LM4, laser modules.

    Figure 2.Energy level diagram of an Nd:YAG crystal

    Figure 3.The laser pulse waveform (when oscilloscope's bandwidth is adjusted to 20 MHz).

    Figure 4.Schematic for macro-micro pulse waveforms.

    Figure 5.micro pulse profiles of the mode-locked 660 nm laser waveforms.

    Figure 6.Beam profile distribution of the 659.592 nm laser.

    Figure 7.Spectrum profile and linewidth of red (660nm) output pulse.

    Figure 8.The long-term stability of laser frequency and linewidth of red laser.

    Figure 9.660nm output power versus the input power for frequency doubling in LBO crystals.

    Figure 10.Power stability of the output laser over 2 hours.

  • [1] NESHASTEH-RIZ A, RAMEZANI F, KOOKLI K,et al. Optimization of the duration and dose of photobiomodulation therapy (660 nm Laser) for spinal cord injury in rats[J].Photobiomodulation, Photomedicine, and Laser Surgery, 2022, 40(7): 488-498.doi:10.1089/photob.2022.0012
    [2] AZADIKHAH F, KARIMI A R. Injectable photosensitizing supramolecular hydrogels: A robust physically cross-linked system based on polyvinyl alcohol/chitosan/tannic acid with self-healing and antioxidant properties[J].Reactive and Functional Polymers, 2022, 173: 105212.doi:10.1016/j.reactfunctpolym.2022.105212
    [3] KANG Y, LI ZH J, LU F Y,et al. Synthesis of red/black phosphorus-based composite nanosheets with a Z-scheme heterostructure for high-performance cancer phototherapy[J].Nanoscale, 2022, 14(3): 766-779.doi:10.1039/D1NR07553E
    [4] ZHENG L B, DONG W J, ZHENG CH CH,et al. Rapid photothermal detection of foodborne pathogens based on the aggregation of MPBA-AuNPs induced by MPBA using a thermometer as a readout[J].Colloids and Surfaces B:Biointerfaces, 2022, 212: 112349.doi:10.1016/j.colsurfb.2022.112349
    [5] PIERFELICE T V, D'AMICO E, IEZZI G,et al. Effect of a 5-aminolevulinic acid gel and 660 nm red LED light on human oral osteoblasts: a preliminary in vitro study[J].Lasers in Medical Science, 2022, 37(9): 3671-3679.doi:10.1007/s10103-022-03651-8
    [6] XIAO Q Y, ZHANG J L, ZHONG X Y,et al. Activation of Wnt/β-catenin signaling involves 660 nm laser radiation on epithelium and modulates lipid metabolism[J].Biomolecules, 2022, 12(10): 1389.doi:10.3390/biom12101389
    [7] KAWANAAK S, KITAMURA S, MIYAMOTO S,et al. 71-2:Invited Paper: High power red laser diodes for display applications[J].SID Symposium Digest of Technical Papers, 2022, 53(1): 953-955.doi:10.1002/sdtp.15653
    [8] MEKTEPLIOGLU M F, OZTURK Y, KÄRTNER F X,et al. Tunable Q-switched mode-locked Cr: LiSAF laser[J].Optics Communications, 2021, 488: 126836.doi:10.1016/j.optcom.2021.126836
    [9] ZOU J H, DONG CH CH, WANG H J,et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format[J].Light:Science & Applications, 2020, 9: 61.
    [10] ZHU H Y, ZHANG G, HUANG C H,et al. 8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd: YAP laser with LBO[J].Applied Physics B, 2008, 91(3-4): 433-436.doi:10.1007/s00340-008-3025-3
    [11] ZHU H Y, ZHANG G, HUANG CH H,et al. The study of 670.7 nm red light generated by intracavity frequency doubling of aQ-switched Nd: YAlO3laser[J].Journal of Physics D:Applied Physics, 2009, 42(4): 045108.doi:10.1088/0022-3727/42/4/045108
    [12] LI L P, LI Y J, SONG Y J,et al. 10. 3 W diode-pumped passively mode-locked Nd: YAG laser at 1319 nm with a semiconductor saturable absorber mirror[J].Laser Physics, 2019, 29(9): 095001.
    [13] LIU X CH, ZHANG F F, WANG ZH M. 13 W continuous-wave intracavity frequency-doubled Nd: YAP/LBO laser at 670.8 nm[J].Optical Review, 2020, 27(6): 493-497.doi:10.1007/s10043-020-00619-3
    [14] HSIEH C L, HUANG H J, CHEN CH L,et al. Selectable two-wavelength Nd: YVO4Raman laser at 671 and 714 nm[J].Optics Letters, 2023, 48(6): 1510-1513.doi:10.1364/OL.484513
    [15] YAO J, ZHENG Q, WANG Y N,et al. High-power narrow-band mode-locked sodium laser via double-stage sum-frequency generation[J].Laser Physics, 2020, 30(8): 085002.doi:10.1088/1555-6611/ab9832
    [16] ZHU H Y, ZHANG G, HUANG CH H,et al. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd: YAG laser[J].Applied Optics, 2007, 46(3): 384-388.doi:10.1364/AO.46.000384
    [17] BIAN Q, BO Y, ZUO J W,et al. 1338-nm single wavelength operation of acousto-optic Q-switched Nd: YAG laser[J].IEEE Photonics Technology Letters, 2022, 34(11): 567-570.doi:10.1109/LPT.2022.3173169
    [18] LIU H T, GONG M L. Compact corner-pumped Nd: YAG/YAG composite slab laser[J].Optics Communications, 2010, 283(6): 1062-1066.doi:10.1016/j.optcom.2009.11.009
    [19] BIAN Q, BO Y, ZUO J W,et al. High-power wavelength-tunable and power-ratio-controllable dual-wavelength operation at 1319 nm and 1338 nm in aQ-switched Nd: YAG laser[J].Photonics Research, 2022, 10(10): 2287-2292.doi:10.1364/PRJ.462168
  • 加载中
图(10)
计量
  • 文章访问数:62
  • HTML全文浏览量:27
  • PDF下载量:53
  • 被引次数:0
出版历程
  • 收稿日期:2023-06-06
  • 修回日期:2020-01-05
  • 网络出版日期:2023-08-08

目录

    /

      返回文章
      返回
        Baidu
        map