All-solid-state acousto-optic mode-locked laser operating at 660 nm
doi: 10.37188/CO.EN-2023-0013
-
摘要:
脉冲宽度为皮秒的红光金宝搏188软件怎么用 器,具有脉冲宽度窄,峰值功率高的优点,使其在工业、医疗、科研和信息存储等方面具有广泛的应用。本文采用声光锁模(AOML)的方式设计了一款具有窄线宽、高转换效率,输出波长为660 nm的全固态皮秒金宝搏188软件怎么用 器。该金宝搏188软件怎么用 器采用半导体侧面泵浦的方式,通过优化谐振腔型,并使用两块LiB3O5 ( LBO )晶体进行腔外倍频,最终获得最大输出功率为8.6 W的660 nm金宝搏188软件怎么用 输出。金宝搏188软件怎么用 器采用脉冲侧面泵浦的模式,获得的锁模脉冲频率为100 MHz,脉冲宽度为887 ps。1319 nm至660 nm金宝搏188软件怎么用 的倍频转换效率可达41%。
Abstract:Red lasers with a picosecond pulse width are widely used in various fields such as industrial, medical, scientific research and information strorage due to their narrow pulse width and high peak power. This paper presents an all-solid-state laser, operating at 660 nm with picosecond pulse width, narrow band, and high conversion efficiency, which is demonstrated by the acousto-optic mode-locked (AOML) method. By optimizing the cavity and implementing external frequency doubling with two LiB3O5 (LBO) crystals along with various techniques, a mode-locked red laser source with a maximum output power of 8.6 W is developed. The laser operates in a pulsed side-pumped regime and contains the mode-locked pulses with a frequency of 100 MHz and a pulse width of 887 ps. The optical-to-optical conversion efficiency from 1319 nm to 660 nm can reach up to 41%.
-
-
[1] NESHASTEH-RIZ A, RAMEZANI F, KOOKLI K, et al. Optimization of the duration and dose of photobiomodulation therapy (660 nm Laser) for spinal cord injury in rats[J]. Photobiomodulation, Photomedicine, and Laser Surgery, 2022, 40(7): 488-498. doi: 10.1089/photob.2022.0012 [2] AZADIKHAH F, KARIMI A R. Injectable photosensitizing supramolecular hydrogels: A robust physically cross-linked system based on polyvinyl alcohol/chitosan/tannic acid with self-healing and antioxidant properties[J]. Reactive and Functional Polymers, 2022, 173: 105212. doi: 10.1016/j.reactfunctpolym.2022.105212 [3] KANG Y, LI ZH J, LU F Y, et al. Synthesis of red/black phosphorus-based composite nanosheets with a Z-scheme heterostructure for high-performance cancer phototherapy[J]. Nanoscale, 2022, 14(3): 766-779. doi: 10.1039/D1NR07553E [4] ZHENG L B, DONG W J, ZHENG CH CH, et al. Rapid photothermal detection of foodborne pathogens based on the aggregation of MPBA-AuNPs induced by MPBA using a thermometer as a readout[J]. Colloids and Surfaces B:Biointerfaces, 2022, 212: 112349. doi: 10.1016/j.colsurfb.2022.112349 [5] PIERFELICE T V, D'AMICO E, IEZZI G, et al. Effect of a 5-aminolevulinic acid gel and 660 nm red LED light on human oral osteoblasts: a preliminary in vitro study[J]. Lasers in Medical Science, 2022, 37(9): 3671-3679. doi: 10.1007/s10103-022-03651-8 [6] XIAO Q Y, ZHANG J L, ZHONG X Y, et al. Activation of Wnt/β-catenin signaling involves 660 nm laser radiation on epithelium and modulates lipid metabolism[J]. Biomolecules, 2022, 12(10): 1389. doi: 10.3390/biom12101389 [7] KAWANAAK S, KITAMURA S, MIYAMOTO S, et al. 71-2: Invited Paper: High power red laser diodes for display applications[J]. SID Symposium Digest of Technical Papers, 2022, 53(1): 953-955. doi: 10.1002/sdtp.15653 [8] MEKTEPLIOGLU M F, OZTURK Y, KÄRTNER F X, et al. Tunable Q-switched mode-locked Cr: LiSAF laser[J]. Optics Communications, 2021, 488: 126836. doi: 10.1016/j.optcom.2021.126836 [9] ZOU J H, DONG CH CH, WANG H J, et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format[J]. Light:Science & Applications, 2020, 9: 61. [10] ZHU H Y, ZHANG G, HUANG C H, et al. 8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd: YAP laser with LBO[J]. Applied Physics B, 2008, 91(3-4): 433-436. doi: 10.1007/s00340-008-3025-3 [11] ZHU H Y, ZHANG G, HUANG CH H, et al. The study of 670.7 nm red light generated by intracavity frequency doubling of a Q-switched Nd: YAlO3 laser[J]. Journal of Physics D:Applied Physics, 2009, 42(4): 045108. doi: 10.1088/0022-3727/42/4/045108 [12] LI L P, LI Y J, SONG Y J, et al. 10. 3 W diode-pumped passively mode-locked Nd: YAG laser at 1319 nm with a semiconductor saturable absorber mirror[J]. Laser Physics, 2019, 29(9): 095001. [13] LIU X CH, ZHANG F F, WANG ZH M. 13 W continuous-wave intracavity frequency-doubled Nd: YAP/LBO laser at 670.8 nm[J]. Optical Review, 2020, 27(6): 493-497. doi: 10.1007/s10043-020-00619-3 [14] HSIEH C L, HUANG H J, CHEN CH L, et al. Selectable two-wavelength Nd: YVO4 Raman laser at 671 and 714 nm[J]. Optics Letters, 2023, 48(6): 1510-1513. doi: 10.1364/OL.484513 [15] YAO J, ZHENG Q, WANG Y N, et al. High-power narrow-band mode-locked sodium laser via double-stage sum-frequency generation[J]. Laser Physics, 2020, 30(8): 085002. doi: 10.1088/1555-6611/ab9832 [16] ZHU H Y, ZHANG G, HUANG CH H, et al. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd: YAG laser[J]. Applied Optics, 2007, 46(3): 384-388. doi: 10.1364/AO.46.000384 [17] BIAN Q, BO Y, ZUO J W, et al. 1338-nm single wavelength operation of acousto-optic Q-switched Nd: YAG laser[J]. IEEE Photonics Technology Letters, 2022, 34(11): 567-570. doi: 10.1109/LPT.2022.3173169 [18] LIU H T, GONG M L. Compact corner-pumped Nd: YAG/YAG composite slab laser[J]. Optics Communications, 2010, 283(6): 1062-1066. doi: 10.1016/j.optcom.2009.11.009 [19] BIAN Q, BO Y, ZUO J W, et al. High-power wavelength-tunable and power-ratio-controllable dual-wavelength operation at 1319 nm and 1338 nm in a Q-switched Nd: YAG laser[J]. Photonics Research, 2022, 10(10): 2287-2292. doi: 10.1364/PRJ.462168