Preparation and sensing characteristics of long-period fiber gratings based on periodic microchannels
doi: 10.37188/CO.EN-2024-0005
-
摘要:
长周期光纤光栅因具有体积小、耐腐蚀、抗电磁干扰和灵敏度高等优点,广泛应用于生物医学、电力工业以及航空航天等领域。本文研制了一种基于周期微通道的长周期光纤光栅传感器。首先通过飞秒金宝搏188软件怎么用 微加工在单模光纤的包层中刻蚀出一系列直线结构,然后通过湿法腐蚀技术对金宝搏188软件怎么用 改性区域进行选择性腐蚀以获得周期性微通道结构,最后在通道中填充聚二甲基硅氧烷(PDMS)以改善光谱质量。实验结果表明,该传感器可以进行温度、应力、折射率和弯曲等传感参数测量,具有良好的传感灵敏度。温度灵敏度为−55.19 pm/°C,应变灵敏度为−3.19 pm/με,最大折射率灵敏度为540.28 nm/RIU,弯曲灵敏度为2.65 dB/m−1,且均表现出良好的线性响应。该传感器在精密测量和传感领域有良好的应用前景。
-
关键词:
- 长周期光纤光栅 /
- 飞秒金宝搏188软件怎么用 微加工 /
- 光纤传感器
Abstract:Long-period fiber gratings have the advantages of small size, corrosion resistance, anti-electromagnetic interference, and high sensitivity, making them widely used in biomedicine, the power industry, and aerospace. This paper develops a long-period fiber grating sensor based on periodic microchannels. First, a series of linear structures were etched in the cladding of a single-mode fiber by femtosecond laser micromachining. Then, the laser-modified region was selectively eroded by selective chemical etching to obtain the periodic microchannel structure. Finally, the channels were filled with polydimethylsiloxane (PDMS) to improve the spectral quality. The experimental results show that the sensor has good sensitivity in the measurement of various parameters such as temperature, stress, refractive index (RI), and bending. It has a temperature sensitivity of −55.19 pm/°C, a strain sensitivity of −3.19 pm/με, a maximum refractive index sensitivity of 540.28 nm/RIU, and a bending sensitivity of 2.65 dB/m−1. All of the measurement parameters show good linear responses. The sensor has strong application prospects in the field of precision measurement and sensing.
-
Table 1. Comparison of measurement parameters for different types of LPFG
Year Sensing structure Temperature sensitivity Strain sensitivity RI sensitivity Bending sensitivity Reference 2013 Periodic microchannels 9.95 pm/°C −2.4 pm/με −391 nm/RIU − [19] 2017 Hollow ellipsoid − − − 0.42 dB/m−1 [21] 2022 Inner microholes 13.06 pm/°C −1.57 pm/με − − [20] 2022 Micro air-channel 12.1 pm/°C − 587.08 nm/RIU − [26] 2023 Taped two-mode fiber and PDMS −0.412 nm/°C −12.16 nm/MPa − − [6] 2023 D-shape 45 pm/°C − − 17.6 nm/ m−1 [27] 2024 Periodic microchannels on the
cladding and PDMS−55.19 pm/°C −3.19 pm/με 540.28 nm/RIU 2.65 dB/m−1 This work -
[1] JIANG J J, HUANG Q Q, MA Y H, et al. Wavelength-tunable L-band mode-locked fiber laser using a long-period fiber grating[J]. Optics Express, 2021, 29(17): 26332-26339. doi: 10.1364/OE.433298 [2] ZHENG ZH M, YU Y S, ZHANG X Y, et al. Femtosecond laser inscribed small-period long-period fiber gratings with dual-parameter sensing[J]. IEEE Sensors Journal, 2018, 18(3): 1100-1103. doi: 10.1109/JSEN.2017.2761794 [3] ZHANG Y N, JIANG P, QIAO D, et al. Sensing characteristics of long period grating by writing directly in SMF-28 based on 800 nm femtosecond laser pulses[J]. Optics & Laser Technology, 2020, 121: 105839. [4] MA Y W, LI X Y, WANG S Y, et al. Highly sensitive strain sensor based on a long-period fiber grating with chain-shaped structure[J]. Applied Optics, 2020, 59(33): 10278-10282. doi: 10.1364/AO.404861 [5] WANG Q, DU CH, ZHANG J M, et al. Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating[J]. Optics Communications, 2016, 377: 89-93. doi: 10.1016/j.optcom.2016.05.039 [6] DENG L F, JIANG CH, HU CH J, et al. Highly sensitive temperature and gas pressure sensor based on long-period fiber grating inscribed in tapered two-mode fiber and PDMS[J]. IEEE Sensors Journal, 2023, 23(14): 15578-15585. doi: 10.1109/JSEN.2023.3279091 [7] BARRERA D, MADRIGAL J, SALES S. Long period gratings in multicore optical fibers for directional curvature sensor implementation[J]. Journal of Lightwave Technology, 2018, 36(4): 1063-1068. doi: 10.1109/JLT.2017.2764951 [8] ZHOU Q, ZHANG W G, CHEN L, et al. Bending vector sensor based on a sector-shaped long-period grating[J]. IEEE Photonics Technology Letters, 2015, 27(7): 713-716. doi: 10.1109/LPT.2015.2390251 [9] ESPOSITO F, SRIVASTAVA A, SANSONE L, et al. Sensitivity enhancement in long period gratings by mode transition in uncoated double cladding fibers[J]. IEEE Sensors Journal, 2020, 20(1): 234-241. doi: 10.1109/JSEN.2019.2942639 [10] ESPOSITO F, SANSONE L, SRIVASTAVA A, et al. Label-free detection of vitamin D by optical biosensing based on long period fiber grating[J]. Sensors and Actuators B: Chemical, 2021, 347: 130637. doi: 10.1016/j.snb.2021.130637 [11] PENG M, LU ZH Q, TANG Y, et al. Femtosecond laser direct writing of long period fiber grating sensor with high refractive index sensitivity[J]. Optical Fiber Technology, 2023, 81: 103511. doi: 10.1016/j.yofte.2023.103511 [12] REN K L, REN L Y, LIANG J, et al. Online fabrication scheme of helical long-period fiber grating for liquid-level sensing[J]. Applied Optics, 2016, 55(34): 9675-9679. doi: 10.1364/AO.55.009675 [13] DENG H CH, WANG R, JIANG X W, et al. A long period grating sensor based on helical capillary optical fiber[J]. Journal of Lightwave Technology, 2021, 39(14): 4884-4891. doi: 10.1109/JLT.2021.3075962 [14] SHI SH H, WANG X, LUO B B, et al. Avian influenza virus immunosensor based on etched long period fiber grating coated with graphene oxide[J]. Acta Photonica Sinica, 2020, 49(1): 0106002. (in Chinese). doi: 10.3788/gzxb20204901.0106002 [15] HINDLE F, FERTEIN E, PRZYGODZKI C, et al. Inscription of long-period gratings in pure silica and germano-silicate fiber cores by femtosecond laser irradiation[J]. IEEE Photonics Technology Letters, 2004, 16(8): 1861-1863. doi: 10.1109/LPT.2004.831264 [16] NIKOGOSYAN D N. Long-period gratings in a standard telecom fibre fabricated by high-intensity femtosecond UV and near-UV laser pulses[J]. Measurement Science and Technology, 2006, 17(5): 960-967. doi: 10.1088/0957-0233/17/5/S04 [17] ZHANG L, LIU Y Q, ZHAO Y H, et al. High sensitivity twist sensor based on helical long-period grating written in two-mode fiber[J]. IEEE Photonics Technology Letters, 2016, 28(15): 1629-1632. doi: 10.1109/LPT.2016.2555326 [18] WANG L, ZHANG W G, CHEN L, et al. Torsion sensor based on two cascaded long period fiber gratings fabricated by CO2 laser pulse irradiation and HF etching technique respectively[J]. Journal of Modern Optics, 2017, 64(5): 541-545. doi: 10.1080/09500340.2016.1249424 [19] GUO J CH, YU Y S, XUE Y, et al. Compact long-period fiber gratings based on periodic microchannels[J]. IEEE Photonics Technology Letters, 2013, 25(2): 111-114. doi: 10.1109/LPT.2012.2227701 [20] LAN F L, WANG D N. Long-period fiber grating based on inner microholes in optical fiber[J]. Optics Letters, 2022, 47(1): 146-149. doi: 10.1364/OL.447225 [21] GONG H P, WANG D N, XIONG M L, et al. Optical fiber hollow ellipsoid for directional bend sensing with a large bending range[J]. Optical Materials Express, 2017, 7(6): 1767-1776. doi: 10.1364/OME.7.001767 [22] LAI Y, ZHOU K, ZHANG L, et al. Microchannels in conventional single-mode fibers[J]. Optics Letters, 2006, 31(17): 2559-2561. doi: 10.1364/OL.31.002559 [23] DONG X R, SUN X Y, LI H T, et al. Femtosecond laser fabrication of long period fiber gratings by a transversal-scanning inscription method and the research of its orientational bending characteristics[J]. Optics & Laser Technology, 2015, 71: 68-72. [24] HECK M, KRÄMER R G, ULLSPERGER T, et al. Efficient long period fiber gratings inscribed with femtosecond pulses and an amplitude mask[J]. Optics Letters, 2019, 44(16): 3980-3983. doi: 10.1364/OL.44.003980 [25] ZHANG SH SH, FANG CH Q, ZHANG CH, et al. A compact ultra-long period fiber grating based on cascading up-tapers[J]. IEEE Sensors Journal, 2020, 20(15): 8552-8558. doi: 10.1109/JSEN.2020.2985311 [26] CHAO X W, WANG D N. Ultra-short long-period fiber grating based on a micro air-channel structure[J]. Optics Letters, 2022, 47(22): 5961-5964. doi: 10.1364/OL.476504 [27] WANG Q Y, DU CH, ZHAO SH, et al. Curvature sensor based on D-shape fiber long period fiber grating inscribed and polished by CO2 laser[J]. Measurement, 2023, 223: 113665. doi: 10.1016/j.measurement.2023.113665