High-sensitivity surface plasmon resonance sensor based on the ten-fold eccentric core quasi-D-shaped photonic quasi-crystal fiber coated with indium tin oxide
doi:10.37188/CO.EN.2021-0006
-
摘要:设计并分析了一种高灵敏度表面等离子体共振(SPR)传感器,该传感器由偏芯D型结构的十重光子准晶光纤(PQF)组成,并局部涂覆氧化铟锡(ITO)。偏芯D型结构可以使液体分析更加方便,增强了纤芯模与SPP模之间的耦合,提高了传感灵敏度。采用有限元法对传感器的特性进行研究。结果表明,传感器的波长灵敏度随折射率(RIs)的增大而增大,最大波长灵敏度和分辨率分别为60000 nm/RIU和1.67×10 −6RIU。该传感器性能优良,在液体折射率测量方面具有很大的应用潜力。Abstract:A high-sensitivity Surface Plasmon Resonance (SPR) sensor comprising of an eccentric core ten-fold Photonic Quasi-crystal Fiber (PQF) with a D-shaped structure and partially coated with Indium Tin Oxide (ITO) is designed and numerically analyzed. The eccentric core D-shaped structure makes the analysis of liquids more convenient and also strengthens the coupling between the core mode and Surface Plasmon Polariton (SPP) mode to improve the sensing sensitivity. The characteristics of the sensor are investigated by the Finite Element Method (FEM). The wavelength sensitivity increases with increasing Refractive Indexes (RIs) and the maximum wavelength sensitivity and resolution are 60000 nm/RIU and 1.67×10 −6RIU, respectively. The sensor delivers excellent performance and has large potential applications in the measurement of liquid refractive indexes.
-
Table 1.Sensing performance of the sensor for different analyte RIs
Analyte RI Peak wavelength
(nm)Res. peak shift
(nm)Wavelength sensitivity
(nm/RIU)Amp. sens.
(RIU−1)Wavelength
resolution (RIU)Amplitude
resolution (RIU)1.35 1760 30 6000 102.424 1.67×10−5 9.76×10−5 1.355 1790 30 6000 110.834 1.37×10−5 9.02×10−5 1.36 1820 40 8000 127.385 1.25×10−5 7.85×10−5 1.365 1860 50 10000 143.603 1.00×10−5 6.96×10−5 1.37 1910 50 10000 168.544 1.00×10−5 5.93×10−5 1.375 1960 60 12000 200.191 8.33×10−6 5.41×10−5 1.38 2020 80 16000 248.501 6.25×10−6 4.02×10−5 1.385 2100 100 20000 329.573 5.00×10−6 3.03×10−5 1.39 2200 150 30000 516.343 3.33×10−6 1.93×10−5 1.395 2350 300 60000 594.241 1.67×10−6 1.68×10−5 1.4 2650 N/A N/A N/A N/A N/A Table 2.Comparison of the performance of the sensor in this paper and those proposed in the recent literatures
Refs. Structure RI Range Operation wave. range (nm) Wave. res. (RIU) Max. wave. sens. (nm/RIU) [19] D-shaped ITO-coated PQF 1.26~1.38 1380~2260 2.86×10−6RIU 35000 nm/RIU [21] D-shaped ITO-coated PCF 1.22~1.33 1200~2250 6.67×10−6RIU 15000 nm/RIU [39] Double groove with Ag and Au 1.22~1.36 1470~2154 8.68×10−6RIU 12400 nm/RIU [34] Eccentric core ITO-coated PQF 1.33~1.39 1480~2008 4.739×10−6RIU 21000 nm/RIU [42] Dual core ITO, graphene-coated 1.37~1.40 1570~1980 − 15000 nm/RIU [41] Arc groove PCF-SPR 1.22~1.37 1650~2730 1.96×10−6RIU 51000 nm/RIU [40] Graphene D-shaped PCF-SPR 1.33~1.38 1880~2140 9.35×10−6RIU 10694 nm/RIU This work D-shaped eccentric core PQF 1.35~1.40 1760~2650 1.67×10−6RIU 60000 nm/RIU -
[1] BROLO A G. Plasmonics for future biosensors[J].Nature Photonics, 2012, 6(11): 709-713.doi:10.1038/nphoton.2012.266 [2] WANG Z M, SU K, FENG B,et al. Coupling length variation and multi-wavelength demultiplexing in photonic crystal waveguides[J].Chinese Optics Letters, 2018, 16(1): 011301.doi:10.3788/COL201816.011301 [3] LIANG H, ZHAN Y F, YIN H L. New observation strategy for X-ray pulsar navigation using a single detector[J].IET Radar,Sonar&Navigation, 2016, 10(6): 1107-1111. [4] YU J L, XIANG K, WANG X Y,et al. Video stabilisation based on modelling of motion imaging[J].IET Image Processing, 2016, 10(3): 177-188.doi:10.1049/iet-ipr.2015.0321 [5] YANG H, OU K, CAO G T,et al. Polarization beam splitter with disparate functionality in transmission and reflection modes[J].Optics Communications, 2019, 443: 104-109.doi:10.1016/j.optcom.2019.03.022 [6] XIE Y, CHEN ZH X, YAN J,et al. Combination of surface Plasmon polaritons and subwavelength grating for polarization beam splitting[J].Plasmonics, 2020, 15(1): 235-241.doi:10.1007/s11468-019-01032-6 [7] YANG ZH, CHEN K, WANG CH G,et al. A photonic crystal beam splitter used for light path multiplexing: synergy of TIR and PBG light guiding[J].Optical and Quantum Electronics, 2020, 52(2): 84.doi:10.1007/s11082-020-2224-y [8] LIU Y CH, CHEN H L, LI SH G,et al. Surface plasmon resonance-induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers[J].Chinese Physics B, 2017, 26(10): 104211.doi:10.1088/1674-1056/26/10/104211 [9] ZHAO H X, XIE J L, LIU J J. An approximate theoretical explanation for super-resolution imaging of two-dimensional photonic quasi-crystal flat lens[J].Applied Physics Express, 2020, 13(2): 022007.doi:10.35848/1882-0786/ab6934 [10] VAN TOAN N, ZHAO D, INOMATA N,et al. Logic gates based on electrically driven nanoelectromechanical switches[J].IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(2): 335-336.doi:10.1002/tee.22814 [11] YIN SH, HU F R, CHEN X Y,et al. Ruler equation for precisely tailoring the resonance frequency of terahertz U-shaped metamaterials[J].Journal of Optics, 2019, 21(2): 025101.doi:10.1088/2040-8986/aafd86 [12] SHUAI B B, XIA L, ZHANG Y T,et al. A multi-core holey fiber based plasmonic sensor with large detection range and high linearity[J].Optics Express, 2012, 20(6): 5974-5986.doi:10.1364/OE.20.005974 [13] RIFAT A A, AHMED R, YETISEN A K,et al. Photonic crystal fiber based plasmonic sensors[J].Sensors and Actuators B:Chemical, 2017, 243: 311-325.doi:10.1016/j.snb.2016.11.113 [14] DE M, SINGH V K. Analysis of a highly sensitive flat fiber plasmonic refractive index sensor[J].Applied Optics, 2020, 59(2): 380-388.doi:10.1364/AO.59.000380 [15] RIFAT A A, MAHDIRAJI G A, SUA Y M,et al. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor[J].Optics Express, 2016, 24(3): 2485-2495.doi:10.1364/OE.24.002485 [16] YAN B, WANG A R, LIU E X,et al. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber[J].Journal of Physics D:Applied Physics, 2018, 51(15): 155105.doi:10.1088/1361-6463/aab4ce [17] YANG X CH, LU Y, LIU B L,et al. Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance[J].Plasmonics, 2017, 12(2): 489-496.doi:10.1007/s11468-016-0289-z [18] LIU CH, WANG L Y, YANG L,et al. The single-polarization filter composed of gold-coated photonic crystal fiber[J].Physics Letters A, 2019, 383(25): 3200-3206.doi:10.1016/j.physleta.2019.07.012 [19] LIU Q, SUN J D, SUN Y D,et al. Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film[J].Optical Materials, 2020, 102: 109800.doi:10.1016/j.optmat.2020.109800 [20] KIM S, KEE C S, LEE J. Novel optical properties of six-fold symmetric photonic quasicrystal fibers[J].Optics Express, 2007, 15(20): 13221-13226.doi:10.1364/OE.15.013221 [21] LIU CH, WANG J W, WANG F M,et al. Surface Plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings[J].Optics Communications, 2020, 464: 125496.doi:10.1016/j.optcom.2020.125496 [22] WANG G Y, LI SH G, AN G W,et al. Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance[J].Optical and Quantum Electronics, 2016, 48(1): 46.doi:10.1007/s11082-015-0346-4 [23] TONG K, WANG F CH, WANG M T. D-shaped photonic crystal fiber biosensor based on silver-graphene[J].Optik, 2018, 168: 467-474.doi:10.1016/j.ijleo.2018.04.119 [24] MONFARED Y E. Refractive index sensor based on surface plasmon resonance excitation in a d-shaped photonic crystal fiber coated by titanium Nitride[J].Plasmonics, 2020, 15(2): 535-542.doi:10.1007/s11468-019-01072-y [25] GANGWAR R K, SINGH V K. Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor[J].Plasmonics, 2017, 12(5): 1367-1372.doi:10.1007/s11468-016-0395-y [26] MOMTAJ M, MOU J R, KAMRUNNAHAR Q M,et al. Open-channel-based dual-core D-shaped photonic crystal fiber plasmonic biosensor[J].Applied Optics, 2020, 59(28): 8856-8865.doi:10.1364/AO.400765 [27] GANGWAR R K, AMORIM V A, MARQUES P V S. High performance titanium oxide coated d-shaped optical fiber plasmonic sensor[J].IEEE Sensors Journal, 2019, 19(20): 9244-9248.doi:10.1109/JSEN.2019.2927728 [28] KAUR V, SINGH S. Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications[J].Optical Fiber Technology, 2019, 48: 159-164.doi:10.1016/j.yofte.2018.12.015 [29] BING P B, WU G F, SUI J L,et al. Double samples synchronous detection sensor based on up-core photonic crystal fiber[J].Optik, 2020, 224: 165522.doi:10.1016/j.ijleo.2020.165522 [30] RIFAT A A, AHMED R, MAHDIRAJI G A,et al. Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR[J].IEEE Sensors Journal, 2017, 17(9): 2776-2783.doi:10.1109/JSEN.2017.2677473 [31] LU J J, LI Y, HAN Y H,et al. D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating[J].Applied Optics, 2018, 57(19): 5268-5272.doi:10.1364/AO.57.005268 [32] HUANG T Y. Highly sensitive SPR sensor based on d-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength[J].Plasmonics, 2017, 12(3): 583-588.doi:10.1007/s11468-016-0301-7 [33] WU J J, LI SH G, SHI M,et al. Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon resonance[J].Optical Fiber Technology, 2018, 43: 90-94.doi:10.1016/j.yofte.2018.04.006 [34] LIU Q, SUN J D, SUN Y D,et al. Surface plasmon resonance sensor based on eccentric core photonic quasi-crystal fiber with indium tin oxide[J].Applied Optics, 2019, 58(25): 6848-6853.doi:10.1364/AO.58.006848 [35] LIU Q, SUN J D, SUN Y D,et al. High-sensitivity SPR sensor based on the eightfold eccentric core PQF with locally coated indium tin oxide[J].Applied Optics, 2020, 59(22): 6484-6489.doi:10.1364/AO.395605 [36] MARUYAMA T, FUKUI K. Indium tin oxide thin films prepared by chemical vapour deposition[J].Thin Solid Films, 1991, 203(2): 297-302.doi:10.1016/0040-6090(91)90137-M [37] WANG J W, LIU CH, WANG F M,et al. Surface plasmon resonance sensor based on coupling effects of dual photonic crystal fibers for low refractive indexes detection[J].Results in Physics, 2020, 18: 103240.doi:10.1016/j.rinp.2020.103240 [38] LI D M, ZHANG W, LIU H,et al. High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength[J].IEEE Photonics Journal, 2017, 9(2): 6801608. [39] LIU CH, WANG J W, JIN X,et al. Near-infrared surface plasmon resonance sensor based on photonic crystal fiber with big open rings[J].Optik, 2020, 207: 164466.doi:10.1016/j.ijleo.2020.164466 [40] AN G W, LI SH G, WANG H Y,et al. Metal oxide-graphene-based quasi-D-shaped optical fiber plasmonic biosensor[J].IEEE Photonics Journal, 2017, 9(4): 6803909. [41] HAQUE E, HOSSAIN M A, NAMIHIRA Y,et al. Microchannel-based plasmonic refractive index sensor for low refractive index detection[J].Applied Optics, 2019, 58(6): 1547-1554.doi:10.1364/AO.58.001547 [42] KAUR V, SINGH S. Design of photonic crystal fiber surface plasmon resonance sensor with external channel approach[C].Proceedings of the Future Technologies Conference (FTC), Springer, 2019: 841-846.