Design and fabrication of an optical film for fiber bragg grating external cavity diode lasers
doi: 10.37188/CO.EN.2022-0010
-
摘要:
腔面光学薄膜是光纤光栅外腔金宝搏188软件怎么用 器(ECL)的关键结构,平面波方法(PWM)被广泛应用于腔面光学薄膜的设计,然而该设计在ECL中的实际应用效果往往并不理想。本文在使用PWM方法时通过时域有限差分法分析其中的原因,并考虑腔面尺寸和结构影响。仿真结果显示,PWM设计存在反射率差和反射曲线偏移等问题,实际的反射特性显著偏离设计值。因此本文重点优化了薄膜设计,并采用磁控溅射工艺镀膜。测量结果显示,优化后增透膜的反射率降低了30%,高反膜反射率增至96%以上,所制备的ECL的光纤输出功率超过650 mW。本文研究结果为ECL和其他半导体光电子器件的腔面光学薄膜研制提供了参考。
-
关键词:
- 外腔金宝搏188软件怎么用 器 /
- 光学薄膜 /
- 时域有限差分 /
- 腔面镀膜
Abstract:The cavity surface optical film is one of the most crucial components of the fiber bragg grating External Cavity diode Laser (ECL). Although, the Plane Wave Method (PWM) is widely used in the optical film preparation, it is not an ideal design method when applied in ECL preparation. The Finite-Difference Time-Domain (FDTD) method is used to analyze this problem by taking the effect of facet dimensions and structure into account. According to the simulation, PWM suffers from poor reflectivity and deviation of the reflection curve, which significantly affects performance. Therefore, the optical film design is optimized and verified by experiments. Magnetron sputtering is used to fabricate the optical film, which is then applied to ECL. The measurement results show that the reflectivity of Anti-Reflection (AR) film is reduced by 30% after optimization, while the reflectivity of High-Reflection (HR) film increased to 96%. The prepared ECL’s fiber output power exceeds 650 mW. In this paper, the optical film suitable for ECL is designed and fabricated, and provides a reference for optical films in ECLs and other semiconductor optoelectronic devices.
-
Table 1. Structural parameters of the simulation model
Parameter Typical value and range Core layer thickness (Hcore) 0.5 μm/0.05−1 μm Core layer width (Lcore) 1 μm/0.2−2 μm Core layer refractive index (ncore) 3.4902−3.6 Cladding refractive index (nclad) 3.4902 Refractive index difference ($\Delta n$) 3% -
[1] CUI Q, LEI Y X, CHEN Y Y, et al. Advances in wide-tuning and narrow-linewidth external-cavity diode lasers[J]. Science China Information Sciences, 2022, 65(8): 181401. doi: 10.1007/s11432-021-3454-7 [2] SWINT R. Scattering loss at waveguide facets and implications for laser efficiency[C]. 2018 IEEE International Semiconductor Laser Conference (ISLC), IEEE, 2018: 1-2. [3] ZHANG S Y, FENG S W, ZHANG Y M, et al. Monitoring of early catastrophic optical damage in laser diodes based on facet reflectivity measurement[J]. Applied Physics Letters, 2017, 110(22): 223503. doi: 10.1063/1.4984598 [4] MROZIEWICZ B. External cavity wavelength tunable semiconductor lasers-a review[J]. Opto-Electronics Review, 2008, 16(4): 347-366. [5] PIEGARI A, FLORY F. Optical Thin Films and Coatings: From Materials to Applications[M]. 2nd ed. Sawston, Cambridge: Woodhead Publishing, 2018: 26-52. [6] MOAYEDFAR M, ASSADI M K. Various types of anti-reflective coatings (ARCS) based on the layer composition and surface topography: a review[J]. Reviews on Advanced Materials Science, 2018, 53(2): 187-205. doi: 10.1515/rams-2018-0013 [7] YUAN H, SUN CH ZH, XU J M, et al. Design and fabrication of multilayer antireflection coating for optoelectronic devices by plasma enhanced chemical vapor deposition[J]. Acta Physica Sinica, 2010, 59(10): 7239-7244. (in Chinese) doi: 10.7498/aps.59.7239 [8] GHADIMI-MAHANI A, FARSAD E, GOODARZI A, et al. Improvement and characterization of high-reflective and anti-reflective nanostructured mirrors by ion beam assisted deposition for 944 nm high power diode laser[J]. Optics Communications, 2015, 355: 94-102. doi: 10.1016/j.optcom.2015.06.021 [9] IKEGAMI T. Reflectivity of mode at facet and oscillation mode in double-heterostructure injection lasers[J]. IEEE Journal of Quantum Electronics, 1972, 8(6): 470-476. doi: 10.1109/JQE.1972.1077091 [10] SHIBAYAMA J, MURAKI M, YAMAUCHI J, et al. Efficient implicit FDTD algorithm based on locally one-dimensional scheme[J]. Electronics Letters, 2005, 41(19): 1046-1047. doi: 10.1049/el:20052381 [11] NGUYEN T G, MITCHELL A. Analysis of optical waveguides with multilayer dielectric coatings using plane wave expansion[J]. Journal of Lightwave Technology, 2006, 24(1): 635-642. doi: 10.1109/JLT.2005.860158 [12] REED M, BENSON T M, KENDALL P C, et al. Antireflection-coated angled facet design[J]. IEE Proceedings - Optoelectronics, 1996, 143(4): 214-220. doi: 10.1049/ip-opt:19960597 [13] TORABI A, SHISHEGAR A A, FARAJI-DANA R. Analysis of modal reflectivity of optical waveguide end-facets by the characteristic Green’s function technique[J]. Journal of Lightwave Technology, 2014, 32(6): 1168-1176. doi: 10.1109/JLT.2013.2297891 [14] LABUKHIN D, LI X. Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing[J]. Journal of Computational Electronics, 2005, 4(1-2): 15-19. doi: 10.1007/s10825-005-7099-4 [15] TANG L, TSUI K H, LEUNG S F, et al. Large-scale, adhesive-free and omnidirectional 3D nanocone anti-reflection films for high performance photovoltaics[J]. Journal of Semiconductors, 2019, 40(4): 042601. doi: 10.1088/1674-4926/40/4/042601 [16] GUO X, LIU Q L, TIAN H J, et al. Optimization of broadband omnidirectional antireflection coatings for solar cells[J]. Journal of Semiconductors, 2019, 40(3): 032702. doi: 10.1088/1674-4926/40/3/032702 [17] JIANG A Q, OSAMU Y, CHEN L Y. Multilayer optical thin film design with deep Q learning[J]. Scientific Reports, 2020, 10(1): 12780. doi: 10.1038/s41598-020-69754-w [18] TRAN V T, VAN MAI H, NGUYEN H M, et al. Machine-learning reinforcement for optimizing multilayered thin films: applications in designing broadband antireflection coatings[J]. Applied Optics, 2022, 61(12): 3328-3336. doi: 10.1364/AO.450946 [19] YANG L M, PAN C Y, LU F P, et al. Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method[J]. Optics &Laser Technology, 2015, 67: 72-77. [20] SARKAR D. FDTD Analysis of Guided Electromagnetic Wave Interaction with Time-Modulated Dielectric Medium[M]. Singapore: Springer, 2022. [21] JIANG H L, WU L T, ZHANG X G, et al. Computationally efficient CN-PML for EM simulations[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(12): 4646-4655. doi: 10.1109/TMTT.2019.2946160 [22] PRUSZYŃSKA-KARBOWNIK E, MROZIEWICZ B. Measurements and analysis of antireflection coatings reflectivity related to external cavity lasers[J]. Optics Communications, 2011, 284(1): 373-375. doi: 10.1016/j.optcom.2010.08.062