留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InP基高功率短波长量子级联 器设计

王琪,刘云,王立军

downloadPDF
王琪, 刘云, 王立军. InP基高功率短波长量子级联 器设计[J]. , 2012, 5(1): 83-91. doi: 10.3788/CO.20120501.0083
引用本文: 王琪, 刘云, 王立军. InP基高功率短波长量子级联 器设计[J]. , 2012, 5(1): 83-91.doi:10.3788/CO.20120501.0083
WANG Qi, LIU Yun, WANG Li-jun. Design of InP-based quantum cascade laser with high power and short wavelength[J]. Chinese Optics, 2012, 5(1): 83-91. doi: 10.3788/CO.20120501.0083
Citation: WANG Qi, LIU Yun, WANG Li-jun. Design of InP-based quantum cascade laser with high power and short wavelength[J].Chinese Optics, 2012, 5(1): 83-91.doi:10.3788/CO.20120501.0083

InP基高功率短波长量子级联 器设计

doi:10.3788/CO.20120501.0083
基金项目:

国家自然科学基金资助项目(No.10974012,No.61106047)

详细信息
  • 中图分类号:TN248.4

Design of InP-based quantum cascade laser with high power and short wavelength

  • 摘要:阐述了InP基高功率短波长量子级联 器(QCL)的设计原理和设计方案。从有源区设计模型出发,介绍了器件的理想和实际载流子传输路径,进而指出有源区设计的发展趋势和方法。根据器件的发展进程,综述了双声子共振设计,非共振抽取式设计,超强耦合设计,深阱设计,浅阱设计,短注入区设计等先进设计方案,这些设计方案使得QCL在低温下的电光转换效率在50%以上,最大室温连续输出功率超过3 W,而器件的特征温度T0和T1的最大值分别达到383 K和645 K。针对量子级联 器的短波长高功率提供的先进设计方案扩大了QCL在民用与军用领域的应用前景,该设计方案亦可为其它波段量子级联 器实现室温高功率的设计提供借鉴。

  • [1] FAIST J,CAPASSO F,SIVCO D L,et al.. Quantum cascade laser[J].Science,1994,264:553. [2] GMACHL C,CAPASSO F,SIVCO D L,et al.. Recent progress in quantum cascade lasers and applications[J].Rep. Prog. Phys.,2001,64:1553-1601. [3] MASSELINK W T,SEMTSIV M P. Quantum-cascade lasers with emission wavelength 3~5 μm[J].SPIE,2010,7836:78360U. [4] LYAKH A,PFLVGL C,DIEHL L,et al.. 1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm[J].Appl. Phys. Lett.,2008,92:111110. [5] LYAKH A,MAULINI R,PFL G L C,et al.. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach[J].Appl. Phys. Lett.,2009,95:141113. [6] SLIVKEN S,BAI Y,GOKDEN B,et al.. Current status and potential of high power mid-infrared intersubband lasers[J].SPIE,2010,7608:76080B. [7] EVANS A,DARVISH S R,SLIVKEN S,et al.. Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency[J].Appl. Phys. Lett.,2007,91:071101. [9] LYAKH A,MAULINI R,TSEKOUN A,et al.. High-performance continuous-wave room temperature 4.0 μm quantum cascade lasers with single-facet optical emission exceeding 2 W[J].Proc. of the National Academy of Sciences,USA,2010,107(44):18799-18802. [10] CAPASSO F. High-performance midinfrared quantum cascade Lasers[J].Opt. Eng.,2010,49(11):111102. [11] TSEKOUN A,GO R,PUSHKARSKY M,et al.. Improved performance of quantum cascade lasers via manufacturable quality epitaxial side down mounting process utilizing aluminum nitride heat sinks[J].SPIE,2006,6127:612702. [12] LIU P Q,HOFFMAN A J,ESCARRA M D,et al.. Highly power-efficient quantum cascade lasers[J].Nature Photonics,2009,10.1038:95-98. [13] HURGIN K,et al.. Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers[J].Appl. Phys. Lett.,2009,94:091101. [14] SHIN J C,SOUZA M D,LIU Z,et al.. Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers[J].Appl. Phys. Lett.,2009,94:201103. [15] BAI Y,TSAO N S,SELCUK E,et al.. Highly temperature insensitive quantum cascade lasers[J].Appl. Phys. Lett.,2010,97:251104. [16] BOTEZ D,SHIN J C,KUMAR S,et al.. Electron leakage and its suppression via deep-well structures in 4.5 to 5.0 μm emitting quantum cascade lasers[J].Opt. Eng.,2010,49(11):111108. [17] BAI Y B,SLIVKEN S,KUBOYA S,et al.. Quantum cascade lasers that emit more light than heat[J].Nature Photonics,2010,4:99-102. [18] FRANZ K J,LIU P Q,RAFTERY J J J,et al.. Short injector quantum cascade lasers[J].IEEE, J. Quantum. Elect..,2010,46(5):591-600. [19] WANKE M C,CAPASSO F,GMACHL C,et al.. Injectorless quantum cascade lasers[J].Appl. Phys. Lett.,2001,78:3950-3952. [20] KATZ S,FRIEDRICH A,BOEHM G,et al.. Continuous wave operation of injectorless quantum cascade lasers at low temperatures[J].Appl. Phys. Lett.,2008,92:181103. [21] SIRTORI C,CAPASSO F,FAIST J,et al.. Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells[J].Phys. Rev. B.,1994,50:8663-8674. [22] NELSON D F,MILLER R C,KLEINMANN D A. Band nonparabolicity effects in semiconductor quantum wells[J].Phys. Rev. B.,1987,35:7770-7773. [23] VAN D E WALLE C G. Band lineups and deformation potentials in themodel-solid theory[J].Phys. Rev. B.,1989,39:1871-1883. [24] ALARELLI M.Heterojunctions and Semiconductor Heterostucture[M]. Berlin:Springer-Verlag,1986. [25] FERREIRA R,BASTARD G. Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures[J].Phys. Rev. B.,1989,40:1074-1086. [26] LIU H C,CAPASSO F.Intersubband Transitions in Quantum Wells:Physics and Device ApplicationsII[M]. San Diego:Academic Press,2000. [27] BECK M,HOFSTETTER D,AELLEN T,et al.. Room temperature quantum cascade laser[J].Science,2002,295:301-305. [28] RAZEGHI M. High performance InP based mid-IR quantum cascade lasers[J].IEEE J. Sel. Top. Quantum Elect.,2009,15:941-951. [29] FAIST J. Wallplug efficiency of quantum cascade lasers:critical parameters and fundamental limits[J].Appl. Phys. Lett.,2007,90:253512.
  • 加载中
计量
  • 文章访问数:3734
  • HTML全文浏览量:611
  • PDF下载量:930
  • 被引次数:0
出版历程
  • 收稿日期:2011-10-11
  • 修回日期:2011-12-13
  • 刊出日期:2012-02-10

目录

    /

      返回文章
      返回
        Baidu
        map