留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率皮秒紫外 器新进展

毛小洁

downloadPDF
毛小洁. 高功率皮秒紫外 器新进展[J]. , 2015, 8(2): 182-190. doi: 10.3788/CO.20150802.0182
引用本文: 毛小洁. 高功率皮秒紫外 器新进展[J]. , 2015, 8(2): 182-190.doi:10.3788/CO.20150802.0182
MAO Xiao-jie. New progress in high-power picosecond ultraviolet laser[J]. Chinese Optics, 2015, 8(2): 182-190. doi: 10.3788/CO.20150802.0182
Citation: MAO Xiao-jie. New progress in high-power picosecond ultraviolet laser[J].Chinese Optics, 2015, 8(2): 182-190.doi:10.3788/CO.20150802.0182

高功率皮秒紫外 器新进展

doi:10.3788/CO.20150802.0182
基金项目:固体 技术重点实验室基金资助项目(No.2013A10403004)
详细信息
    通讯作者:

    毛小洁(1981—),男,四川内江人,硕士,高级工程师,2007年于电子科技大学获得硕士学位,主要从事高功率皮秒放大技术及高功率非线性频率变换技术方面的研究。E-mail:maoxiaojie991220@163.com

  • 中图分类号:TN248

New progress in high-power picosecond ultraviolet laser

  • 摘要:高功率皮秒紫外 器在高精密加工、 医疗、光电对抗和光伏产业等领域有重要应用,近年来成为固体 新光源研究热点。本文对国内外基于和频技术的高功率皮秒紫外 器研究新进展进行了归纳和总结。首先,阐述了和频工作原理,介绍了和频产生皮秒紫外 的非线性晶体;然后,介绍了国内外高功率皮秒紫外 器的新进展,包括:高功率皮秒紫外 器、高峰值功率皮秒紫外 器、高功率和高峰值功率皮秒紫外 器。最后,展望了高功率皮秒紫外 器的进一步发展及应用。归纳和总结表明:高功率皮秒紫外 器在国外较成熟,国内在该领域的研究刚刚起步。光子晶体光纤和碟片 器输出基频光的皮秒紫外 器有突出的优势,已成为皮秒紫外 产业的主力军。

  • 图 1和频过程原理图

    Figure 1.Schematic diagram for principle of THG

    图 2343 nm皮秒UV 器(P=63 W)实验装置图

    Figure 2.Overall laser setup of 343 nm UV ps lasers(P=63 W)

    图 3343 nm皮秒UV 器(P=5 W)实验装置图

    Figure 3.Expertmental set-up of 343 nm UV ps lasers(P=5 W)

    图 4利用LCB作为非线性晶体的355 nm皮秒UV 器实验装置图

    Figure 4.Experimental setup of 355 nm UV ps laser using LCB as a nonlinear optical crystal

    图 5再生放大器和和频结构示意图

    Figure 5.Schematic diagram of regenerative amplifier and sum frequency

    图 6再生放大器光路示意图

    Figure 6.Schematic diagram of regenerative amplifier

    图 7双程功率放大示意图

    Figure 7.Schematic diagram of double amplifier

    图 8倍频、和频及四倍频光路示意图

    Figure 8.Diagram of double frequency, third harmonic generation and fourth harmonic generation

    图 9通快再生放大器照片

    Figure 9.Photo of TRUMPF regengrative amplifier

    图 10343 nm皮秒UV 器(P=34.4 W)实验装置示意图

    Figure 10.Schematic of laser setup of 343 nm UV ps lasers(P=34.4 W)

    表 1来自研究机有关构皮秒UV 报道和 公司皮秒UV产品

    Table 1.Picosecond UV laser reports from research institution and picosecond UV products from laser companies

    机构名称 波长/nm 功率/W 脉宽/ps 重频/Hz 和频 红外到UV效率/%
    EOLITE Systems 343 63 40 80×106 LBO 25
    EOLITE Systems 343 5 30 2×106 LBO 50
    中科院半导体所 355 7.8 10 80×106 LCB 22
    北京工业大学 355 129.6×10-6 17 1 LBO 16.6
    中电十一所 355 350×10-3 15 10 BBO 14.5
    通快公司 343 15 10 800×103 LBO 15
    Konstanz university 343 34.4 1.1 3.5×106 BBO 23.7
    Edgewave 355 39.1 10 1×106 LBO 46
    下载: 导出CSV
  • [1] [1] 王志俊,李阳平,周潇逸,等.紫外压印长波红外亚波长结构的涂胶工艺研究[J].光学精密工程,2014,22(8):2180-2187. WANG ZH J,LI Y P,ZHOU X Y,et al.. Spin coating of UV-curable resist for imprinting long-wave infrared subwavelength structures[J]. Opt. Precision Eng.,2014,22(8):2180-2187.(in Chinese)
    [2] [2] 王珣,金春水,匡尚奇,等.极紫外光学器件辐照污染检测技术[J].中国光学,2014,7(1):79-88. WANG X,JIN CH SH,KUANG SH Q,et al.. Techniques of radiation contamination monitoring for extreme ultraviolet devices[J]. Chinese Optics,2014,7(1):79-88.(in Chinese)
    [3] [3] 于国权,郭劲,李岩,等. 角度欺骗干扰内场仿真系统精度分析[J].光学精密工程,2013,21(10):2610-2616. YU G Q,GUO J,LI Y,et al.. Precision analysis of indoor simulation system for laser angle deception jam[J]. Opt. Precision Eng.,2013,21(10):2160-2616.(in Chinese)
    [4] [4] 马宁,李晓毅,陆鸢,等.紫外光通信调制方式的对比研究[J].光学与光电技术,2014,12(3):79-84. MA N,LI X Y,LU Y,et al.. Research on modulation contrast of ultraviolet communication[J]. Optics & Optoelectronic Technology,2014,12(3):79-84.(in Chinese)
    [5] [5] 沈雷军,李波,王忠志,等.YVO4: Tm3+的真空紫外发光性能[J].发光学报,2014,35(9):1034-1039. SHEN L J,LI B,WANG ZH ZH,et al.. Vacuum ultraviolet spectra of YVO4: Tm3+[J]. Chinese J. Luminescence,2014,35(9):1034-1039.(in Chinese)
    [6] [6] 蔡钧安,秦志新.纳米压印制备的光子晶体结构对AlGaN基材料深紫外出光效率的提高[J].发光学报,2014,35(8):998-1003. CAI J A,QIN ZH X. Enhancement of deep-UV light extraction efficiency from bulk AlGaN with photonic crystals fabricated by nanoimprint lithography[J]. Chinese J. Luminescence,2014,35(8):998-1003.(in Chinese)
    [7] [7] DMITRIEV V G,GGURZADYAN G,NIKOGOSYAN D N. Handbook of Nonlinear Optical Cryatals[M]. New York:Springer,1999.
    [8] [8] MAKER P D,TERHUNE R W,NISENOFF M,et al.. Effects of dispersion and focusing on the production of optical harmonics[J]. Physics Review Letters,1962,8(1):21-22.
    [9] [9] 李港,郝海林.晶体长度对倍频效率的影响[J].北京工业大学学报,1992,18(1):73-76. LI G,HAO H L. The influence of crystal length for the efficiency of second harmonic[J]. J. Beijing Polytechnic University,1992,18(1):73-76.(in Chinese)
    [10] [10] 陈创天,叶宁,林峧,等.运用晶体非线性光学效应的阴离子基团理论探索新型紫外非线性光学材料[J].自然科学进展,2000,10(8):673-683. CHEN CH T,YE L,LIN X,et al.. Using the nonlinear optical crystal effect of the anionic group theory to explore new uv nonlinear optical materials[J]. Progress in Natural Science,2000,10(8):673-683.(in Chinese)
    [11] [11] CHEN CH T,WU Y C,JIANG A,et al.. New nonlinear optical crystal:LiB3O5[J]. J. the Optics Society of America B,1989,6(4):616-621.
    [12] [12] SANGLA D,SABY J,COCQUELIN B,et al.. High power picosecond fiber laser emitting 50 W at 343 nm at 80 MHz[J]. SPIE,2012,8237:82370N.
    [13] [13] PIERROT S,SABY J,COCQUELIN B,et al.. High-power all fiber picosecond sources from IR to UV[J]. SPIE,2011,7914:79140Q.
    [14] [14] SABY J,COCQUELIN B,MEUNIER A,et al.. High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm[J]. SPIE,2010,7580:75800I.
    [15] [15] PIERROT S,SABY J,BERTRAND A,et al.. All fiber high energy,high power picosecond laser[C]//CLEO,2010:CFD3.
    [16] [16] ZHANG L,LI K,XU D G,et al.. A 7.81W 355 nm ultraviolet picosecond laser using La2CaB10O19as a nonlinear optical crystal[J]. Optics Express,2014,22(14):17187-17192.
    [17] [17] POLLEHN H K. Performance and reliability of third-generation image intensifiers[J]. Advances in Electronics and Electron Physics,1985,64:61-69.
    [18] [18] 白振岙,白振旭,陈檬,等.LD泵浦全固态355 nm紫外皮秒脉冲 器[J].应用光学,2012,33(4):804-807. BAI ZH A,BAI ZH X,CHEN M,et al.. LD-pumped all-solid-state 355 nm ultraviolet picoseconds pulse laser[J]. J. Applied Optics,2012,33(4):804-807.(in Chinese)
    [19] [19] 姜志兴,毛小洁,庞庆生,等.大能量多波段皮秒 技术研究[J]. 与红外,2014,44(9):994-997. JIANG ZH X,MAO X J,PANG Q SH,et al.. Key technology of large energy multi-band picosecond laser[J]. Laser & Infrared,2014,44(9):994-997.(in Chinese)
    [20] [20] 毛小洁,秘国江,庞庆生,等.20 MHz紧凑型高功率被动锁模Nd: YVO4 器[J].中国 ,2013,40(10):1002004. MAO X J,BI G J,PANG Q SH,et al.. K20MHz compact high power passively mode-locked Nd: YVO4laser[J]. Chinese J. Lasers,2013,40(10):1002004.(in Chinese)
    [21] [21] 田金荣,宋晏蓉,王丽.常用 峰值功率公式误差分析[J].中国光学,2014,7(2):253-259. TIAN J R,SONG Y R,WANG L. Error analysis of peak power formula in pulsed lasers[J]. Chinese Optics,2014,7(2):253-259.(in Chinese)
    [22] [22] OLIVER H.HECKL,DIRK SUTTER. Perfect precision in industrial micro machining[J]. Laser Technik J.,2012,9(2):42-47.
    [23] [23] FENG G,FENG G B,SHAO B B,et al.. Energy measurement of high-repetition-rate pulsed laser[J]. Chinese Optics,2013,6(2):196-200.
    [24] [24] BAUER D,ZAWISCHA I,H.SUTTER D,et al.. Mode-locked Yb:YAG thin-disk oscillator with 41 J pulse energy at 145 W average infrared power and high power frequency conversion[J]. Optics Express,2012,20(9):9698-9704.
    [25] [25] ZHU P,LI D J,LIU Q Y,et all.. 39.1μJ picosecond ultraviolet pulses at 355 nm with 1 MHz repeat rate perfect precision in industrial micro machining[J]. Opitc Letters,2013,38(22):4716-4718.
    [26] [26] 吴金,吴晗平,黄俊斌,等.极紫外光学器件辐照污染检测技术光纤光栅传感信号解调技术研究进展[J].中国光学,2014,7(4):519-531. WU J,WU H P,HUANG J B,et al.. Research progress in signal demodulation technology of fiber Bragg grating sensors[J]. Chinese Optics,2014,7(4):519-531.(in Chinese)
  • 加载中
图(10)/ 表(1)
计量
  • 文章访问数:2597
  • HTML全文浏览量:616
  • PDF下载量:1021
  • 被引次数:0
出版历程
  • 收稿日期:2014-12-11
  • 录用日期:2014-12-15
  • 刊出日期:2015-04-25

目录

    /

      返回文章
      返回
        Baidu
        map