留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹偏振测量系统及其应用

鄂轶文,黄媛媛,徐新龙,汪力

downloadPDF
鄂轶文, 黄媛媛, 徐新龙, 汪力. 太赫兹偏振测量系统及其应用[J]. , 2017, 10(1): 98-113. doi: 10.3788/CO.20171001.0098
引用本文: 鄂轶文, 黄媛媛, 徐新龙, 汪力. 太赫兹偏振测量系统及其应用[J]. , 2017, 10(1): 98-113.doi:10.3788/CO.20171001.0098
E Yi-wen, HUANG Yuan-yuan, XU Xin-long, WANG Li. Polarization sensitive terahertz measurements and applications[J]. Chinese Optics, 2017, 10(1): 98-113. doi: 10.3788/CO.20171001.0098
Citation: E Yi-wen, HUANG Yuan-yuan, XU Xin-long, WANG Li. Polarization sensitive terahertz measurements and applications[J].Chinese Optics, 2017, 10(1): 98-113.doi:10.3788/CO.20171001.0098

太赫兹偏振测量系统及其应用

doi:10.3788/CO.20171001.0098
基金项目:

国家重点基础研究计划(973计划)资助项目2014CB339800

国家自然科学基金资助项目11374240

国家自然科学基金资助项目11374358

教育部博士点基金资助项目201310110007

详细信息
    作者简介:

    鄂轶文(1988-), 女, 内蒙古包头人, 博士研究生, 2010年于中央民族大学获得学士学位, 主要从事太赫兹与物质相互作用的研究。E-mail:eyiwen@iphy.ac.cn

    通讯作者:

    徐新龙(1976-),男,江苏南通人,博士,教授,博士生导师,2000年、2003年于首都师范大学分别获得学士、硕士学位,2006年于中国科学院物理研究所获得博士学位,主要从事超材料,纳米材料的光电性质以及太赫兹光电技术等方面的研究。E-mail:xlxuphy@nwu.edu.cn

  • 中图分类号:O441;TB97

Polarization sensitive terahertz measurements and applications

Funds:

Supported by National Key Basic Research Program2014CB339800

National Natural Science Foundation of China11374240

National Natural Science Foundation of China11374358

Ph.D. Programs Foundation of Ministry of Education of China201310110007

More Information
  • 摘要:麦克斯韦方程中的介质响应特性一般由本构关系中的介电函数 εω)和磁导率 μω)来描述,对于介质中传播的电磁场,通常存在两个独立的本征传播模式,它们是齐次麦克斯韦方程组的特解,各自具有特定的色散关系和偏振态。如果介质中传播的电磁场为两个本征模分量的线性迭加,其偏振态将会随着传播的过程而改变。常见的现象有各向异性晶体中的双折射、超材料中的偏振调制效应、自然界中手性材料的旋光响应以及外磁场作用下产生的Faraday效应等。本文从测量方法、数据处理、测量精度等方面介绍太赫兹时域偏振检测系统及其发展状况,特别是利用线栅、超材料以及光学手段调制太赫兹电场偏振态的方法。对近几年太赫兹偏振检测系统在分析手性超材料、太赫兹圆二色谱以及Faraday效应等实验中的应用进行了总结和讨论。最后展望了太赫兹偏振检测系统未来进一步的发展空间及应用前景。

  • 图 1常见太赫兹偏振检测方法

    Figure 1.Usual terahertz polarization measurement method

    图 2太赫兹椭偏仪[28]

    Figure 2.Terahertz ellipsometer[28]

    图 3任意电场偏振椭圆

    Figure 3.Arbitrary electric field ellipse

    图 4双锁相放大器反射型太赫兹偏振检测系统示意图[33]

    Figure 4.Diagram of terahertz polarization measurement reflection system with double lock-in amplifiers[33]

    图 5(a)无基底[40]和(b)有基底[41]的太赫兹金属线栅偏振片

    Figure 5.Terahertz metal wire grid polarizer (a) without[40]and (b) with[41]substrate

    图 6利用半导体空间光调制器调节太赫兹电场偏振态[52]

    Figure 6.Modulate terahertz electric field polarization state with semiconductor spatial light modulator[52]

    图 7利用气压制动调制超材料单元结构变形量以及手性特征[53]:(a)单元结构及其两种变形模式(b)实验示意图(c)通过气压控制单元结构变形量的原理图

    Figure 7.Using a pneumatic force to modulate deformation of unit cell structure and chirality[53]; (a) unit cell and its two deformation modes, (b) experimental Diagram, (c) a schematic diagram of the pressure application for changing the deformation

    图 8利用空间光调制器调节800 nm 的偏振和强度从而获得不同偏振态的太赫兹脉冲[55];图中(a)、(b)和(c)依次为线偏振,左旋圆偏振以及右旋圆偏振太赫兹电场

    Figure 8.Using spatial light modulator to modulate intensity and polarization of 800 nm laser to generate arbitrary polarization terahertz pulse[55]; (a), (b) and (c) are linearly, left-handed and right-handed polarized terahertz electric field, respectively

    图 9空气等离子体加螺旋电场(左)后辐射圆偏振太赫兹脉冲(右)[57]

    Figure 9.Appling spiral electric filed (left) on air plasma to radiate circularly polarized terahertz pulse (right)[57]

    图 10双层手性材料实现负折射率并利用800 nm 进行调制[62]

    Figure 10.Negative refraction index realized by double layer chiral metamaterial and modulate the value using 800 nm laser[62]

    图 11非对称透射超材料;(a)和(b)为电场分别从样品正反两面入射所得的透射谱[63],‘±’表示圆偏振电场的手性

    Figure 11.Asymmetric transmission of metamaterial; (a) and (b) indicate that electric filed is incident from either side of the sample respectively[63], the sign '±' indicates the chirality of the circularly polarized electric field

    图 12多层超材料利用F-P腔实现超高效率的偏振转换和异常折射[64];图(b)为样品(a)的反射谱;图(e)为样品(d)的在1.4 THz的透射率随透射角的变化情况;图(c)为样品(d)中间的超材料结构

    Figure 12.Ultra high efficient polarization conversion and abnormal transmission in mutilayer metamaterial[64]; (b) is reflection spectroscopy of sample (a); (e) is the transmission of another sample (d), which depends on transmission angle. (c) is the specific structure of middle layer in sample d

    图 13GaAs/AlGaAs异质结的Faraday效应[70];(a)y方向太赫兹波形随磁场强度变化的情况;(b)太赫兹频段偏振方向以及椭圆率随磁场变化的情况

    Figure 13.Faraday effect in GaAs/AlGaAs heterojunction[70]; (a) THz waveform inydirection measured with indicated magnetic field; (b) corresponding polarization direction and ellipticity

    图 14费米能级分别为60 meV (a)和70 meV (b)单层石墨烯的量子Hall效应[71]

    Figure 14.Quantum Hall effect of single layer graphene with 60 meV (a) and 70 meV (b) Fermi energy respectively[71]

  • [1] TONOUCHI M. Cutting-edge terahertz technology[J]. Nat. Photonics, 2007, 1(2):97-105.doi:10.1038/nphoton.2007.3
    [2] DORNEY T D, BARANIUK R G, MITTLEMAN D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. J. Opt. Soc. Am. A, 2001, 18(7):1562-1571.doi:10.1364/JOSAA.18.001562
    [3] JEPSEN P U, COOKE D G, KOCH M. Terahertz spectroscopy and imaging-Modern techniques and applications[J]. Laser & Photonics Reviews, 2011, 5(1):124-166.http://orbit.dtu.dk/en/publications/terahertz-spectroscopy-and-imaging--modern-techniques-and-applications(48eb87c2-9425-43ba-9bba-10d35ef83e59)/export.html
    [4] SHEN Y C, UPADHYA P C, LINFIELD E H, et al.. Temperature-dependent low-frequency vibrational spectra of purine and adenine[J]. Appl. Phys. Lett., 2003, 82(14):2350-2352.doi:10.1063/1.1565680
    [5] TAKAHASHI M. Terahertz vibrations and hydrogen-bonded networks in crystals[J]. Crystals, 2014, 4(2):74.doi:10.3390/cryst4020074
    [6] 潘学聪, 姚泽翰, 徐新龙, 等.太赫兹波段超材料的制作、设计及应用[J].中国光学, 2013, 6(3):283-296.http://www.opticsjournal.net/abstract.htm?aid=OJ130701000340jQmSpV

    PAN X C, YAO Z H, XU X L, et al.. Fabrication, design and application of THz metamaterials[J]., 2013, 6(3):283-296.(in Chinese)http://www.opticsjournal.net/abstract.htm?aid=OJ130701000340jQmSpV
    [7] SMITH D R, PENDRY J B, WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792.doi:10.1126/science.1096796
    [8] HUANG S-W, GRANADOS E, HUANG W R, et al.. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate[J]. Optics Letters, 2013, 38(5):796-798.doi:10.1364/OL.38.000796
    [9] LIU K, KOULOUKLIDIS A D, PAPAZOGLOU D G, et al.. Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams[J]. Optica, 2016, 3(6):605-608.doi:10.1364/OPTICA.3.000605
    [10] KAMPFRATH T, SELL A, KLATT G, et al.. Coherent terahertz control of antiferromagnetic spin waves[J]. Nat. Photon., 2011, 5(1):31-34.doi:10.1038/nphoton.2010.259
    [11] SCHUBERT O, HOHENLEUTNER M, LANGER F, et al.. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nat. Photon., 2014, 8(2):119-123.doi:10.1038/nphoton.2013.349
    [12] LANGE C, MAAG T, HOHENLEUTNER M, et al.. Extremely nonperturbative nonlinearities in gaas driven by atomically strong terahertz fields in gold metamaterials[J]. Phys. Rev. Lett., 2014, 113(22):227401.doi:10.1103/PhysRevLett.113.227401
    [13] SEIFERTT, JAISWALS, MARTENS U, et al.. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J]. Nat. Photon., 2016, 10(7):483-488.doi:10.1038/nphoton.2016.91
    [14] FINNERAN I A, GOOD J T, HOLLAND D B, et al.. Decade-spanning high-precision terahertz frequency comb[J]. Phys. Rev. Lett., 2015, 114(16):163902.doi:10.1103/PhysRevLett.114.163902
    [15] CHEN H-T, PADILLA W J, ZIDE J M O, et al.. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119):597-600.doi:10.1038/nature05343
    [16] GU J, SINGH R, LIU X, et al.. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat. Commun., 2012, 3:1151.doi:10.1038/ncomms2153
    [17] ZHANG S, PARK Y S, LI J S, et al.. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 2009, 102(2):023901.doi:10.1103/PhysRevLett.102.023901
    [18] KONG J A. Electromagnetic Wave TheoryJohn[M]. Wiley and Sons Ltd, 1986.
    [19] BARRON L D. Molecular Light Scattering and Optical Activity[M]. 2nd ed. Cambridge Universtiy Press, 2004.
    [20] BAI B, SVIRKO Y, TURUNEN J, et al.. Optical activity in planar chiral metamaterials:theoretical study[J]. Physical Review A, 2007, 76(2):023811.doi:10.1103/PhysRevA.76.023811
    [21] HUANG Y Y, YAO Z H, WANG Q, et al.. Coupling Tai Chi Chiral metamaterials with strong optical activity in terahertz region[J]. Plasmonics, 2015, 10(4):1005-1011.doi:10.1007/s11468-015-9892-7
    [22] 徐新龙, 黄媛媛, 姚泽翰, 等.手性超材料的设计、电磁特性及应用[J].西北大学学报, 2016, 46(1):1-12http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201601001.htm

    XU X L, HUANG Y Y, YAO Z H, et al.. The design, electromagnetic properties and applications of chiral metamaterials[J]. J. Northwest University, 2016, 46(1):1-12.(in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201601001.htm
    [23] JEON T-I, GRISCHKOWSKY D. Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy[J]. Applied Physics Letters, 1998, 72(23):3032-3034.doi:10.1063/1.121531
    [24] NASHIMA S, MORIKAWA O, TAKATA K, et al.. Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy[J]. Applied Physics Letters, 2001, 79(24):3923-3925.doi:10.1063/1.1413498
    [25] PASHKIN A, KEMPA M, NĚMEC H, et al.. Phase-sensitive time-domain terahertz reflection spectroscopy[J]. Review of Scientific Instruments, 2003, 74(11):4711-4717.doi:10.1063/1.1614878
    [26] NAGASHIMA T, TANI M, HANGYO M. Polarization-sensitive THz-TDS and its application to anisotropy sensing[J]. J. Infrared Millimeter and Terahertz Waves, 2013, 34(11):740-775.doi:10.1007/s10762-013-0020-5
    [27] PLANKEN P C M, NIENHUYS H-K, BAKKER H J, et al.. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe[J]. J. Opt. Soc. Am. B, 2001, 18(3):313-317.doi:10.1364/JOSAB.18.000313
    [28] NAGASHIMA T, HANGYO M. Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry[J]. Applied Physics Letters, 2001, 79(24):3917-3919.doi:10.1063/1.1426258
    [29] MATSUMOTO N, HOSOKURA T, NAGASHIMA T, et al.. Measurement of the dielectric constant of thin films by terahertz time-domain spectroscopic ellipsometry[J]. Optics Letters, 2011, 36(2):265-267.doi:10.1364/OL.36.000265
    [30] NESHAT M, ARMITAGE N P. Terahertz time-domain spectroscopic ellipsometry:instrumentation and calibration[J]. Opt. Express, 2012, 20(27):29063-29075.doi:10.1364/OE.20.029063
    [31] TOMPKINS H G, IRENE E A. Handbook of Ellipsometry[M]. Norwich, NY:William Andrew Publishing, 2005.
    [32] GOLDSTEIN D. Polarized Light[M]. 2nd edMarcel Dekker Ltd, 2003.
    [33] IWATA T, UEMURA H, MIZUTANI Y, et al.. Double-modulation reflection-type terahertz ellipsometer for measuring the thickness of a thin paint coating[J]. Opt. Express, 2014, 22(17):20595-20606.doi:10.1364/OE.22.020595
    [34] LÜ Z, ZHANG D, MENG C, et al.. Polarization-sensitive air-biased-coherent-detection for terahertz wave[J]. Applied Physics Letters, 2012, 101(8):081119.doi:10.1063/1.4748171
    [35] CASTRO-CAMUS E, LLOYD-HUGHES J, JOHNSTON M B, et al.. Polarization-sensitive terahertz detection by multicontact photoconductive receivers[J]. Applied Physics Letters, 2005, 86(25):254102.doi:10.1063/1.1951051
    [36] MAKABE H, HIROTA Y, TANI M, et al.. Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna[J]. Opt. Express, 2007, 15(18):11650-11657.doi:10.1364/OE.15.011650
    [37] BULGAREVICH D S, WATANABE M, SHIWA M, et al.. A polarization-sensitive 4-contact detector for terahertz time-domain spectroscopy[J]. Opt. Express, 2014, 22(9):10332-10340.doi:10.1364/OE.22.010332
    [38] NAHATA A, WELING A S, HEINZ T F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling[J]. Applied Physics Letters, 1996, 69(16):2321-2323.doi:10.1063/1.117511
    [39] NEMOTO N, HIGUCHI T, KANDA N, et al.. Highly precise and accurate terahertz polarization measurements based on electro-optic sampling with polarization modulation of probe pulses[J]. Opt. Express, 2014, 22(15):17915-17929.doi:10.1364/OE.22.017915
    [40] ADE P A R, COSTLEY A E, CUNNINGHAM C T, et al.. Free-standing grids wound from 5μm diameter wire for spectroscopy at far-infrared wavelengths[J]. Infrared Physics, 1979, 19(5):599-601.doi:10.1016/0020-0891(79)90080-0
    [41] YAMADA I, TAKANO K, HANGYO M, et al.. Terahertz wire-grid polarizers with micrometer-pitch Al gratings[J]. Optics Letters, 2009, 34(3):274-276.doi:10.1364/OL.34.000274
    [42] COSTLEY A E, HURSEY K H, NEILL G F, et al.. Free-standing fine-wire grids:their manufacture, performance, and use at millimeter and submillimeter wavelengths[J]. J. Opt. Soc. Am., 1977, 67(7):979-981.doi:10.1364/JOSA.67.000979
    [43] KYOUNG J, JANG E Y, LIMA M D, et al.. A reel-wound carbon nanotube polarizer for terahertz frequencies[J]. Nano Letters, 2011, 11(10):4227-4231.doi:10.1021/nl202214y
    [44] AKIMA N, IWASA Y, BROWN S, et al.. Strong anisotropy in the far-infrared absorption spectra of stretch-aligned single-walled carbon nanotubes[J]. Advanced Materials, 2006, 18(9):1166-1169.doi:10.1002/(ISSN)1521-4095
    [45] REN L, PINT C L, ARIKAWA T, et al.. Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks[J]. Nano Letters, 2012, 12(2):787-790.doi:10.1021/nl203783q
    [46] XU X L, PARKINSON P, CHUANG K C, et al.. Dynamic terahertz polarization in single-walled carbon nanotubes[J]. Physical Review B, 2010, 82(8):085441.doi:10.1103/PhysRevB.82.085441
    [47] HSIEH C-F, LAI Y-C, PAN R-P, et al.. Polarizing terahertz waves with nematic liquid crystals[J]. Optics Letters, 2008, 33(11):1174-1176.doi:10.1364/OL.33.001174
    [48] WITHAYACHUMNANKUL W, ABBOTT D. Metamaterials in the Terahertz Regime[J]. IEEE Photonics Journal, 2009, 1(2):99-118.doi:10.1109/JPHOT.2009.2026288
    [49] MARKOVICH D L, ANDRYIEUSKI A, ZALKOVSKIJ M, et al.. Metamaterial polarization converter analysis:limits of performance[J]. Applied Physics B, 2013, 112(2):143-152.doi:10.1007/s00340-013-5383-8
    [50] LONGQING C, WEI C, ZHEN T, et al.. Manipulating polarization states of terahertz radiation using metamaterials[J]. New J. Physics, 2012, 14(11):115013.doi:10.1088/1367-2630/14/11/115013
    [51] WU J, NG B, LIANG H, et al.. Chiral metafoils for terahertz broadband high-contrast flexible circular polarizers[J]. Physical Review Applied, 2014, 2(1):014005.doi:10.1103/PhysRevApplied.2.014005
    [52] KANDA N, KONISHI K, KUWATA-GONOKAMI M. All-photoinduced terahertz optical activity[J]. Optics Letters, 2014, 39(11):3274-3277.doi:10.1364/OL.39.003274
    [53] KAN T, ISOZAKI A, KANDA N, et al.. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals[J]. Nat. Commun., 2015, 6:8422.doi:10.1038/ncomms9422
    [54] SHAN J, DADAP J I, HEINZ T F, Circularly polarized light in the single-cycle limit:the nature of highly polychromatic radiation of defined polarization[J]. Opt. Express, 2009, 17(9):7431-7439.doi:10.1364/OE.17.007431
    [55] SATO M, HIGUCHI T, KANDA N, et al.. Terahertz polarization pulse shaping with arbitrary field control[J]. Nat. Photon., 2013, 7(9):724-731.doi:10.1038/nphoton.2013.213
    [56] KIM K Y, TAYLOR A J, GLOWNIA J H, et al.. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nat. Photon., 2008, 2(10):605-609.doi:10.1038/nphoton.2008.153
    [57] LU X, ZHANG X C. Generation of elliptically polarized terahertz waves from laser-induced plasma with double helix electrodes[J]. Physical Review Letters, 2012, 108(12):123903.doi:10.1103/PhysRevLett.108.123903
    [58] RAMAKRISHNA S A. Physics of negative refractive index materials[J]. Rep. Prog. Phys., 2005, 68(2):449-521.doi:10.1088/0034-4885/68/2/R06
    [59] PENDRY J B. A chiral route to negative refraction[J]. Science, 2004, 306(5700):1353-1355.doi:10.1126/science.1104467
    [60] PLUM E, ZHOU J, DONG J, et al.. Metamaterial with negative index due to chirality[J]. Physical Review B, 2009, 79(3):035407.doi:10.1103/PhysRevB.79.035407
    [61] WANG B N, ZHOU J F, KOSCHNY T, et al.. Chiral metamaterials:simulations and experiments[J]. J. Opt. A-Pure Appl. Opt., 2009, 11(11):114003.doi:10.1088/1464-4258/11/11/114003
    [62] ZHOU J, CHOWDHURY D R, ZHAO R, et al.. Terahertz chiral metamaterials with giant and dynamically tunable optical activity[J]. Physical Review B, 2012, 86(3):035448.doi:10.1103/PhysRevB.86.035448
    [63] SINGH R, PLUM E, MENZEL C, et al.. Terahertz metamaterial with asymmetric transmission[J]. Physical Review B, 2009, 80(15):153104doi:10.1103/PhysRevB.80.153104
    [64] GRADY N K, HEYES J E, CHOWDHURY D R, et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138):1304-1307.doi:10.1126/science.1235399
    [65] JING X, GALAN J, RAMIAN G, et al.. Terahertz circular dichroism spectroscopy of biomolecules[J]. SPIE, 2003, 5268:19-26.
    [66] ARIKAWA T, WANG X, BELYANIN A A, et al.. Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics[J]. Opt. Express, 2012, 20(17):19484-19492.doi:10.1364/OE.20.019484
    [67] CRASSEE I, LEVALLOIS J, WALTER A L, et al.. Giant Faraday rotation in single-and multilayer graphene[J]. Nat. Phys., 2011, 7(1):48-51.doi:10.1038/nphys1816
    [68] SHUVAEV A M, ASTAKHOV G V, PIMENOV A, et al.. Giant magneto-optical faraday effect in hgte thin films in the terahertz spectral range[J]. Physical Review Letters, 2011, 106(10):107404.doi:10.1103/PhysRevLett.106.107404
    [69] PRUISKEN A M M. Universal singularities in the integral quantum hall effect[J]. Physical Review Letters, 1988, 61(11):1297-1300.doi:10.1103/PhysRevLett.61.1297
    [70] IKEBE Y, MORIMOTO T, MASUTOMI R, et al.. Optical hall effect in the integer quantum hall regime[J]. Physical Review Letters, 2010, 104(25):256802.doi:10.1103/PhysRevLett.104.256802
    [71] SHIMANO R, YUMOTO G, YOO J Y, et al.. Quantum Faraday and Kerr rotations in graphene[J]. Nat. Commun., 2013, 4:1841.doi:10.1038/ncomms2866
  • 加载中
图(14)
计量
  • 文章访问数:2566
  • HTML全文浏览量:573
  • PDF下载量:783
  • 被引次数:0
出版历程
  • 收稿日期:2016-10-27
  • 修回日期:2016-11-17
  • 刊出日期:2017-02-25

目录

    /

      返回文章
      返回
        Baidu
        map