留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平腔面发射半导体 器研究进展

海一娜,邹永刚,田锟,马晓辉,王海珠,范杰,白云峰

downloadPDF
海一娜, 邹永刚, 田锟, 马晓辉, 王海珠, 范杰, 白云峰. 水平腔面发射半导体 器研究进展[J]. , 2017, 10(2): 194-206. doi: 10.3788/CO.20171002.0194
引用本文: 海一娜, 邹永刚, 田锟, 马晓辉, 王海珠, 范杰, 白云峰. 水平腔面发射半导体 器研究进展[J]. , 2017, 10(2): 194-206.doi:10.3788/CO.20171002.0194
HAI Yi-na, ZOU Yong-gang, TIAN Kun, MA Xiao-hui, WANG Hai-zhu, FAN Jie, BAI Yun-feng. Research progress of horizontal cavity surface emitting semiconductor lasers[J]. Chinese Optics, 2017, 10(2): 194-206. doi: 10.3788/CO.20171002.0194
Citation: HAI Yi-na, ZOU Yong-gang, TIAN Kun, MA Xiao-hui, WANG Hai-zhu, FAN Jie, BAI Yun-feng. Research progress of horizontal cavity surface emitting semiconductor lasers[J].Chinese Optics, 2017, 10(2): 194-206.doi:10.3788/CO.20171002.0194

水平腔面发射半导体 器研究进展

doi:10.3788/CO.20171002.0194
基金项目:

吉林省科技计划重点项目20140204028GX

吉林省科技计划重点项目20150204068GX

详细信息
    作者简介:

    海一娜 (1990-), 女, 内蒙通辽人, 博士研究生, 主要从事光电子技术与应用方面的研究。E-mail:haiyn90@163.com

    通讯作者:

    邹永刚 (1982-), 男, 吉林长春人, 博士, 副研究员, 硕士生导师, 2004年、2009年于吉林大学分别获得学士、博士学位, 主要从事光电子技术与应用、光电子器件等方面研究。E-mail:zouyg@cust.edu.cn

  • 中图分类号:TN248.4

Research progress of horizontal cavity surface emitting semiconductor lasers

Funds:

Key Project of S & T Development Plan of Jilin Province of China20140204028GX

Key Project of S & T Development Plan of Jilin Province of China20150204068GX

  • 摘要:近年来,水平腔面发射半导体 器具有高功率、高光束质量及易封装集成等优良性能,已成为 器领域的研究热点。本文详细阐述了几种水平腔面发射半导体 器的结构设计、工作原理以及 输出特性,并对该 器国内外最新研究进展与发展现状进行了总结和论述。在此基础上,对该 器的研究方向和发展趋势进行了分析与展望。目前,水平腔面发射半导体 器的 输出功率可达瓦级,美国Alfalight公司引入曲线形光栅的单一发射器输出功率可达73 W。随着应用领域的不断拓展,中远红外波段水平腔面发射 器将成为未来的研究焦点。

  • 图 1水平腔面发射 器结构示意图

    Figure 1.Structure diagram of horizontal cavity surface emitting lasers

    图 2垂直发射 器芯片结构示意图[23]

    Figure 2.Structure diagram of vertical emitting laser chip[23]

    图 3水平腔面发射 器横截面原理图[24]

    Figure 3.Schematic cross-sectional view of horizontal cavity surface emitting lasers (HCSEL)[24]

    图 4二维面发射 器的立体结构图

    插图:面发射 器截面图[26]

    Figure 4.3-D schematic view of 2-D surface-emitting laser

    Inset: Cross-sectional view of surface-emitting laser[26]

    图 5 器结构 (光栅周期Λ和占空比σ)[28]

    Figure 5.Laser structure (grating periodicityΛand duty cycleσ)[28]

    图 6衬底发射量子级联 器结构示意图[29]

    Figure 6.Schematic representation of the substrate-emitting quantum cascade laser[29]

    图 7非周期光栅结构面发射量子级联 器示意图[30]

    Figure 7.Schematic diagram of surface-emitting quantum cascade lasers using biperiodic top metal grating[30]

    图 8面发射掩埋异质结构DFB/DBR量子级联 器结构示意图[31]

    Figure 8.Schematic diagram of surface-emitting buried-heterostructure DFB/DBR quantum cascade lasers[31]

    图 9三维器件结构示意图[32]

    Figure 9.Schematic three-dimensional device representation[32]

    图 10 器结构横截面结构图[33]

    Figure 10.Schematic cross section of laser structure[33]

    图 11面发射量子级联 器光栅与脊形波导横截面及局部光栅的电子显微俯瞰示意图[37]

    Figure 11.Schematic cross section of the grating region and the ridge-waveguide of surface emitting quantum cascade lasers and scanning electron microscopy top viewpoint of partial grating[37]

    图 12表面金属光栅分布反馈量子级联 器示意图[38]

    Figure 12.Schematic diagram of the surface metal grating distributed feedback quantum cascade lasers[38]

    图 13面发射量子级联 器示横截面结构图[39]

    Figure 13.Schematic cross section of the surface-emitting quantum cascade lasers[39]

    图 14宽条形衬底出光分布反馈量子级联 器示意图[42]

    Figure 14.Schematic of broad area substrate-emitting distributed feedback quantum cascade lasers[42]

    图 15光栅结构扫描电子显微镜图像[43]

    Figure 15.SEM image of the grating structure[43]

    图 16曲线形光栅面发射分布反馈 器 (带有中心泵浦区域、光栅和吸收区域) 俯视图[44-45]

    Figure 16.An underside view of a curved-grating surface emitting distributed feedback laser showing central pumped-stripe, grating and absorber regions[44-45]

    图 17圆形光栅 器常见结构[46]

    Figure 17.Generic structure of the circular grating lasers[46]

    图 18二阶同轴圆形金属光栅太赫面发射分布反馈量子级联 器示意图[47]

    Figure 18.Schematic diagram of THz surface emitting distributed feedback quantum cascade lasers with a 2nd-order concentric circular metal grating[47]

    图 19圆形量子级联 器异质结和波导结构示意图

    插图是完整的圆形 器形貌[49]

    Figure 19.Schematic illustration of the heterostructure and the waveguide of a ring quantum cascade lasers. The inset shows a sketch of the complete ring laser[49]

    图 20器件横截面图[61]

    Figure 20.Schematic cross section of a device[61]

    图 21光子晶体面发射 器结构示意图

    左下方说明的是底部侧模圆形p电极直径[62]

    Figure 21.Schematic structure of a PCSEL device. Lower left panel illustrates bottom side view of circular p-electrode with diameterL[62]

    表 13种结构面发射 器性能

    Table 1.Properties of three kinds surface emitting laser structures

    引入结构 波段范围/nm 出光光束质量 加工工艺 出光功率
    转向镜[23-24] 979.65 半高全宽0.9 nm 较复杂 W级
    1 490 半高全宽0.6 nm 较复杂 mW级
    二阶光栅[44] 9XX~1 5XX 椭圆形光斑发散角较小 较简易 W级
    光子晶体[22,61-62] 1 4XX~8 0XX 圆形光斑发散角较小 较复杂 mW级
    下载: 导出CSV
  • [1] LEE H C, GAENSSLEN R E.Advances in Fingprint Technology[M]. Elsevier, 1991.
    [2] TANIYASU Y, KASU M, MAKIMOTO T. An aluminium nitridelight-emitting diode with a wavelength of 210 nanometres[J].Nature, 2006, 441:325-328.doi:10.1038/nature04760
    [3] HIRAVAMA H, TSUKADA Y, MAEDA T,et al.. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multi quantum-barrier electronlocking layer[J].Appl. Phys. Express, 2010, 3:031002.doi:10.1143/APEX.3.031002
    [4] KHAN M A, SHATALOV M, MARUSKA H P,et al.. Ⅲ-Nitride UV devices[J].Jpn. J. Appl. Phys., 2005, 44(10):7191-7206.doi:10.1143/JJAP.44.7191
    [5] 王立军, 宁永强, 秦莉, 等.大功率半导体 器研究进展[J].发光学报, 2015, 36(1):1-19.http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201501002.htm

    WANG L J, NING Y Q, QIN L,et al.. Development of high power diode laser[J].Chinese J. Luminescence, 2015, 36(1):1-19.(in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201501002.htm
    [6] 李珂, 石鹏, 张晓波, 等.双透镜系统光学整形元件的设计制作[J].中国 , 2010, 37(8):1972-1977.doi:10.3788/CJL

    LI K, SHI P, ZHANG X B,et al.. Design and preparation of diffraction optical element in dual lens system[J].Chinese J. Lasers, 2010, 37(8):1972-1977.(in Chinese)doi:10.3788/CJL
    [7] 马浩统, 周朴, 王小林, 等.基于液晶空间光调制器的 光束近场整形[J].光学学报, 2010, 30(7):2032-2036.doi:10.3788/AOS

    MA H T, ZHOU P, WANG X L,et al.. Near-field beam shaping based on liquid crystal spatial light modulator[J].Acta Optica Scinica, 2010, 30(7):2032-2036.(in Chinese)doi:10.3788/AOS
    [8] 陈凯, 李平雪, 陈檬, 等.高斯光束整形为平顶光束的非球面系统设计和面形参数分析[J]. 与光电子学进展, 2011, 48(3):032201.http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201103010.htm

    CHEN K, LI X P, CHEN M,et al.. Design and analysis of surface parameters of aspheric lenses system converting Gaussian beam to flattop beam[J].Laser&Optoelectronics Progress, 2011, 48(3):032201.(in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201103010.htm
    [9] 金国藩, 严瑛白, 邬敏贤, 等.二元光学[M].北京:国防工业出版社, 1998.

    JIN G F, YAN Y B, WU M X,et al..Binary Optics[M]. Bingjing:National Defense Industry Press, 1998.(in Chinese)
    [10] STEFAN H, BEN L, BORIS R,et al.. Single emitter based diode lasers with high brightness and narrow linewidth[J].Proc. SPIE, 2011, 7918:79180M.https://www.researchgate.net/publication/252552659_Single_Emitter_Based_Diode_Lasers_with_High_Brightness_High_Power_and_Narrow_Linewidth
    [11] PAUL W, BERND K H, KARSTEN R,et al.. High-power, high-brightness and low-weight fiber coupled diode laser device[J].SPIE, 2011, 7918:PSI79180O.https://www.researchgate.net/publication/253092491_High-power_high-brightness_and_low-weight_fiber_coupled_diode_laser_device
    [12] KITCHING J, KNAPPE S. A microwave frequency reference based in VCSEL driven dark line resonances in Cs vapor[J].IEEE Transactions on Instrumentation and Measurement, 2000, 49(6):1313-1317.doi:10.1109/19.893276
    [13] MILLER M, GRANBHERR M. Improved output performance of high-power VCSELs[J].IEEE J Sel Top Quantum Electron, 2001, 7:210-216.doi:10.1109/2944.954132
    [14] 田锟, 邹永刚, 马晓辉, 等.面发射分布反馈半导体 器[J].中国光学, 2016, 9(1):51-64.doi:10.3788/co.

    TIAN K, ZOU Y G, MA X H,et al.. Surface emitting distributed feedback semiconductor lasers[J].Chinese Optics, 2016, 9(1):51-64.(in Chinese)doi:10.3788/co.
    [15] 戚晓东, 叶淑娟, 张楠, 等.面发射分布反馈半导体 器及光栅耦合半导体 器[J].中国光学与应用光学, 2010, 3(5):415-431.http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201005003.htm

    QI X D, YE S J, ZHANG N,et al.. Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes[J].Chinese J. Optics and Applied Optics, 2010, 3(5):415-431.http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201005003.htm
    [16] TOBY J G, DON O, YAN X,et al.. Long wavelength surface-emitting distributed feedback (SE-DFB) laser for range finding applications[J].SPIE, 2012, 8241:824113-4.https://www.researchgate.net/publication/258711644_Long_wavelength_Surface-Emitting_Distributed_Feedback_SE-DFB_laser_for_range_finding_applications
    [17] LIANG G Z, LIANG H K, ZHANG Y,et al.. Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers[J].Optics Express, 2013, 21(26):31878-31882.
    [18] CLEMENS S, ELVIS M, SANG I A,et al.. Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers[J].Applied Physics Letters, 2012, 100(19):191103-3.doi:10.1063/1.4712127
    [19] CLEMENS S, ROLF S, SANG I A,et al.. Linearly polarized light from substrate emitting ring cavity quantumcascade lasers[J].Applied Physics Letters, 2013, 103(8):081101-3.doi:10.1063/1.4819034
    [20] SHOICHI K, TAKESHI K, YASUHIRO N,et al.. GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding[J].Applied Physics Letters, 2010, 97(25):251112-3.doi:10.1063/1.3528352
    [21] WU T T, CHEN C C, LU T C,et al.. Effects of lattice types on GaN-based photonic crystal surface-emitting lasers[J].Quantum Electronics, 2015, 21(1):1700106.
    [22] ZHAO D Y, LIU S, YANG H J,et al.. Printed large-area single-mode photonic crystal bandedge surface-emitting lasers on silicon[J].Scientific Reports, 2016, 6:18860.doi:10.1038/srep18860
    [23] OSOWSKI M L, LAMMERT R M. High Power Frequency Stabilized Surface Emitting Arrays[R]. Osowski-SSDLTR, 2005.
    [24] MOEHRLE M, KREISSL J, MOLZOW W D,et al.. Ultra-low threshold 1490 nm surface-emitting BH-DFB laser diode with integrated monitor photodiode[C]. 22ndInternational Conference on Indium Phosphide & Related Materials (IPRM), IEEE, 2010:TuA3-4.
    [25] LI S, BOTEZ D. Design for high-power single-mode operation from 2-D surface-emitting ROW-DFB lasers[J].Photonics Technology Letters, 2005, 17(3):519-521.doi:10.1109/LPT.2004.842388
    [26] LI S, BOTEZ D. Analysis of 2-D Surface-Emitting ROW-DFB Semiconductor Power Single-Mode Operation[J].J. Quantum Electronics, 2007, 43(8):655-667.doi:10.1109/JQE.2007.900264
    [27] HOFLING S, HEINRICH J, REITHMAIER J P,et al.. Widely tunable single-modequantum cascade lasers with two monolithically coupled Fabry-P rot cavities[J].Appl. Phys. Lett., 2006, 89:241126.doi:10.1063/1.2404933
    [28] MARTIN S, FARHAN R. Analysis of Terahertz surface emitting quantum-cascade lasers[J].J. Quantum Electronics, 2006, 42(3):257-265.doi:10.1109/JQE.2005.863138
    [29] LYAKH A, ZORY P, BOTEZ D,et al.. Substrate-emitting, distributed feedback quantum cascade lasers[J].Applied Physics Letters, 2007, 91:181116.doi:10.1063/1.2803851
    [30] MAISONS G, CARRAS M, GARCIA M,et al.. Substrate emitting index coupled quantum cascade lasers using biperiodic top metal grating[J].Applied Physics Letters, 2009, 94(15):151104.doi:10.1063/1.3113524
    [31] SIGLER C, KIRCH J D, EARLES T,et al.. Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes[J].Applied Physics Letters, 2014, 1049(13):131108.https://www.researchgate.net/publication/261318558_Design_for_high-power_single-lobe_grating-surface-emitting_quantum_cascade_lasers_enabled_by_plasmon-enhanced_absorption_of_antisymmetric_modes
    [32] BOYLE C, SIGLER C, KIRCH J D,et al.. High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode[J].Applied Physics Letters, 2016, 108:121107.doi:10.1063/1.4944846
    [33] GUO W H, LU Q Y, LIU J Q,et al.. Analysis of surface emitting distributed-feedback quantum cascade laser based on a surface-plasmon waveguide[J].J. Semiconductors, 2010, 31(11):114014.doi:10.1088/1674-4926/31/11/114014
    [34] GUO W H, LIU J Q, CHEN J Y,et al.. Single-mode surface-emitting, distributed feedback quantum-cascade lasers based on hybrid waveguide structure[J].Chinese Optics Letters, 2011, 9(6):061404.doi:10.3788/COL
    [35] 叶淑娟, 秦莉, 戚晓东, 等.二阶光栅分布反馈半导体 器的出光特性[J].中国 , 2010, 37(9):2371-2375.doi:10.3788/CJL

    YE SH J, QIN L, QI X D,et al.. Emission characteristics of second-order distributed feedback semiconductor lasers[J].Chinese J. Lasers, 2010, 37(9):2371-2375.(in Chinese)doi:10.3788/CJL
    [36] CHEN Y Y, QIN L, JIA P,et al.. High power narrow far-field broad-stripe semiconductor lasers with second-order metal grating feedback[J].Semiconductor Lasers and Applications, 2012, 8552:85520E.https://www.researchgate.net/publication/259130556_High_Power_Narrow_far-field_Broad-Stripe_Semiconductor_Lasers_with_Second-Order_Metal_Grating_Feedback
    [37] CHEN J Y, KIU J Q, GUO W H,et al.. High-power surface-emitting surface-plasmon-enhanced distributed feedback quantum cascade lasers[J].Photonics Technology Letters, 2012, 24(11):972-974.doi:10.1109/LPT.2012.2192724
    [38] YAO D Y, LIU F Q, ZHANG J C,et al.. High power surface metal grating distributed feedback quantum cascade lasers emitting atλ~8.3μm[J].Chinese Physics Letter, 2012, 29(9):94205.doi:10.1088/0256-307X/29/9/094205
    [39] YAO D Y, ZHANG J C, LIU F Q,et al.. Surface-emitting quantum cascade lasers operation in continuous-wave mode above 70℃ atλ-4.6μm[J].Applied Physics Letters, 2013, 103:041121.doi:10.1063/1.4816722
    [40] TAN S Y, ZHAI T, LU D,et al.. Fabrication and characterization of high power 1064-nm DFB lasers[J].Chinese Physics Letter, 2013, 30(11):114202.doi:10.1088/0256-307X/30/11/114202
    [41] ZHANG J C, LIU F Q, YAO D Y,et al.. Multi-wavelength surface emitting quantum cascade lasers based on equivalent phase shift[J].J. Applied Physics, 2014, 115:033106.doi:10.1063/1.4862649
    [42] YAO D Y, ZHANG J C, LIU F Q,et al.. 1.8W room temperature pulsed operation substrate-emitting quantum cascade lasers[J].IEEE Photonics Technology Letters, 2014, 26(4):323-325.doi:10.1109/LPT.2013.2293495
    [43] LIU Y H, ZHANG J C, JIA Z W,et al.. Top grating, surface-emitting DFB quantum cascade lasers in continuous-wave operation[J].Photonics Technology Letters, 2015, 27(17):1829-1832.doi:10.1109/LPT.2015.2443780
    [44] TOBY J G, DON O, YAN X,et al.. High-power surface emitting distributed feedback (SE-DFB) lasers[J]. 2012 IEEE Photonics Society Summer Topical Meeting, IEEE, 2012:1-2.https://www.researchgate.net/publication/261036286_High-power_surface_emitting_distributed_feedback_SE-DFB_lasers
    [45] KANSKAR M, CAI J, KEDLAYA D,et al.. High brightness 975 nm surface-emitting distributed feedback laser & arrays[J].SPIE, 2010, 7686:76860J.https://www.researchgate.net/publication/238554158_High_Brightness_975_nm_Surface-emitting_Distributed_Feedback_Laser_Arrays
    [46] TURNBULL G A, CARLETON A, BARLOW G F,et al.. Influence of grating characteristics on the operation of circular-grating distributed feedback polymer lasers[J].J. Applied Physics, 2005, 98:023105.doi:10.1063/1.1935131
    [47] YU S F, LI X F. Design and analysis of terahertz surface-emitting distributed-feedback lasers with circular metal grating[C]. IEEE 3rd International Nanoelectronics Conference, IEEE, 2010:1-2.
    [48] LIANG G Z, LIANG H K, ZHANG Y,et al.. Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers[J].Applied Physics Letters, 2013, 102:031119.doi:10.1063/1.4789535
    [49] ROLF S, CLEMENS S, TOBIAS Z,et al.. Grating-based far field modifications of ring quantum cascade lasers[J].Optics Express, 2014, 22(13):15829-15836.doi:10.1364/OE.22.015829
    [50] MEIER M, MEKIS A, DODABALAPUR A,et al.. Laser action from two-dimensional distributed feedback in photonic crystal[J].Applied Physics Letters, 1999, 74:7.doi:10.1063/1.123116
    [51] IMADA M, NODA S, CHUTINAN A,et al.. Coherent two-diamwnsional lasing action in surface-emitting laser with triandular-lattice photonic crystal structure[J].Applied Physics Letters, 1999, 75:316.doi:10.1063/1.124361
    [52] NODA S, YOKOYAMA M, IMADA M,et al.. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design[J].Science, 2001, 293:1123.doi:10.1126/science.1061738
    [53] IMADA M, CHUTINAN A, NODA S,et al.. Multidirectionally distributed feedback photonic crystal lasers[J].Phys. Rev. B, 2002, 65:195306.doi:10.1103/PhysRevB.65.195306
    [54] VURGAFTMAN I, MEYER J R. Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers[J].IEEE J. Quantum Electron, 2003, 39:689-700.doi:10.1109/JQE.2003.811943
    [55] OHNISHI D, OKANO T, IMADA M,et al.. Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser[J].Optical Express, 2004, 12:1562-1568.doi:10.1364/OPEX.12.001562
    [56] MIYAI E, SAKAI K, OKANO T,et al.. Photonics:Lasers producing tailored beams[J].Nature, 2006, 441:946-948.doi:10.1038/441946a
    [57] MATSUBARA H, YOSHIMOTO S, SAITO H,et al.. GaN photo-crystal surface-wmitting laser at blue-violet wavelengths[J].Science, 2008, 319:445-447.doi:10.1126/science.1150413
    [58] KIM M, KIM C S, BEWLEY W,et al.. Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared[J].Applied Physics Letters, 2006, 88:191105.doi:10.1063/1.2203234
    [59] CHASSAGNEUX Y, COLOMBELLI R, MAINEULT W,et al.. Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions[J].Nature, 2009, 457:174-178.doi:10.1038/nature07636
    [60] KUROSAKA Y, IWAHASHI S, LIANG Y,et al.. On-chip beam-steering photonic-crystal lasers[J].Photonics, 2010, 4:447-450.doi:10.1038/nphoton.2010.118
    [61] XU G Y, VIRGINIE M, YANNICK C,et al.. Surface-emitting quantum cascade lasers with metallic photonic-crystal resonators[J].Applied Physics Letters, 2009, 94:221101-3.doi:10.1063/1.3143652
    [62] LIANG Y, TSUYOSHI O, KYOKO K,et al.. Mode stability in photonic-crystal surface-emitting lasers with largeκ1DL[J].Applied Physics Letters, 2014, 104:021102-3.doi:10.1063/1.4861708
  • 加载中
图(21)/ 表(1)
计量
  • 文章访问数:3093
  • HTML全文浏览量:617
  • PDF下载量:1337
  • 被引次数:0
出版历程
  • 收稿日期:2016-10-20
  • 修回日期:2016-11-29
  • 刊出日期:2017-04-01

目录

    /

      返回文章
      返回
        Baidu
        map