留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光谱指数的蜜橘成熟度评价模型研究

刘燕德,叶灵玉,孙旭东,韩如冰,肖怀春,马奎荣,朱丹宁,吴明明

downloadPDF
刘燕德, 叶灵玉, 孙旭东, 韩如冰, 肖怀春, 马奎荣, 朱丹宁, 吴明明. 基于光谱指数的蜜橘成熟度评价模型研究[J]. , 2018, 11(1): 83-91. doi: 10.3788/CO.20181101.0083
引用本文: 刘燕德, 叶灵玉, 孙旭东, 韩如冰, 肖怀春, 马奎荣, 朱丹宁, 吴明明. 基于光谱指数的蜜橘成熟度评价模型研究[J]. , 2018, 11(1): 83-91.doi:10.3788/CO.20181101.0083
LIU Yan-de, YE Ling-yu, SUN Xu-dong, HAN Ru-bing, XIAO Huai-chun, MA Kui-rong, ZHU Dan-ning, WU Ming-ming. Maturity evaluation model of tangerine based on spectral index[J]. Chinese Optics, 2018, 11(1): 83-91. doi: 10.3788/CO.20181101.0083
Citation: LIU Yan-de, YE Ling-yu, SUN Xu-dong, HAN Ru-bing, XIAO Huai-chun, MA Kui-rong, ZHU Dan-ning, WU Ming-ming. Maturity evaluation model of tangerine based on spectral index[J].Chinese Optics, 2018, 11(1): 83-91.doi:10.3788/CO.20181101.0083

基于光谱指数的蜜橘成熟度评价模型研究

doi:10.3788/CO.20181101.0083
基金项目:

国家自然科学基金61640417

“十二五”国家863计划课题SS2012AA101306

江西省优势科技创新团队建设计划项目20153BCB24002

南方山地果园智能化管理技术与装备协同创新中心2014-60

江西省研究生创新资金项目YC2015-S238

详细信息
    作者简介:

    刘燕德(1967—), 女, 江西泰和人, 博士, 教授, 博士生导师, 主要从事光机电检测技术方面的研究。E-mail:jxliuyd@163.com

  • 中图分类号:TS255.7

Maturity evaluation model of tangerine based on spectral index

Funds:

National Natural Science Foundation of China61640417

"Twelfth five-year" National 863 Plan ProjectSS2012AA101306

Jiangxi Advantage Science and Technology Innovation Team Construction Project20153BCB24002

Center of the Technology and Equipment of the Intelligent Management for the Southern Mountain Orchard Collaborative Innovation2014-60

Innovative Funds for Jiangxi Graduate StudentsYC2015-S238

More Information
  • 摘要:本文探索了基于光谱指数的蜜橘成熟度快速无损评价方法及模型。以2016年9~11月份6个不同采收期的300个蜜橘作为实验样品,采集重量、横纵径、叶绿素、色差、可溶性固形物(SSC)、酸度(TA)、近红外光谱等数据。通过对比分析上述各参数的平均值和偏差,筛选出叶绿素、叶绿素/SSC、叶绿素/固酸比作为蜜橘成熟度评价指标。利用光谱变异系数分析光谱的特征,筛选出649、724、672、1 100 nm 4个特征波长,通过特征波长线性组合方法以及相关性分析,得出最佳光谱指数。接着,以225个样品为建模集、75个样品为预测集,在成熟度评价指标与光谱指数间进行多元线性回归(MLR)分析。对比发现,以叶绿素为成熟度评价指标的评价模型的预测结果最准确,建模和预测相关系数分别达到0.98和0.96,建模均方根误差(RMSEC)和预测均方根误差(RMSEP)分别为0.49和0.59,建模和预测偏差分别为-6.1×10 -8和-0.014。实验结果表明,利用光谱指数能便捷、准确地评定蜜橘成熟度,为后续开发低成本测量成熟度的仪器提供了理论依据。

  • 图 1便携式光谱仪

    Figure 1.Portable spectrometer

    图 2不同采收期的蜜橘重量

    Figure 2.Tangerine weights in different harvest periods

    图 3不同采收期的蜜橘横径

    Figure 3.Transverse diameters in different harvest periods

    图 4不同采收期的蜜橘纵径

    Figure 4.Longitudinal diameters in different harvest periods

    图 5不同采收期的蜜橘叶绿素

    Figure 5.Chlorophyll in different harvest periods

    图 6不同采收期的蜜橘色差

    Figure 6.Chromatic aberrations in different harvest periods

    图 7不同采收期的蜜橘可溶性固形物含量

    Figure 7.Soluble solid contents in different harvest periods

    图 8不同采收期的蜜橘酸度含量

    Figure 8.Tangerine acidity contents in different harvest periods

    图 9不同采收期的蜜橘固酸比

    Figure 9.Tangerine solid-acid ratios in different harvest

    图 10不同采收期的叶绿素与糖度的比值

    Figure 10.Ratio of chlorophyll to SSC in different harvest periods

    图 11不同采收期的叶绿素与固酸比的比值

    Figure 11.Ratios of chlorophyll to solid-acid in different harvest periods

    图 12不同采收期的江西蜜橘近红外光谱特性

    Figure 12.Near infrared spectrum characteristics of Jiangxi orange in different harvest periods

    图 13变异系数曲线

    Figure 13.Variation coefficient curve

    图 14成熟度光谱指数随采收期的变化

    Figure 14.Maturity spectral index changes with the harvest period

    图 15多元线性回归模型

    Figure 15.Multiple linear regression model

    表 1不同采收期的参数范围

    Table 1.Parameter ranges of different harvest periods

    批次 采摘时间 重量/g 横径/mm 纵径/mm 叶绿素 色差 糖度(Bix°) 酸度/%
    1 9月1日 94~116.7 60~63 47~54 5.8~35 -50~-27.9 9.1~11.6 0.53~2.88
    2 9月11日 94.43~137.82 60~68 46~54 3.9~40 55.7~66.8 9.2~11.5 0.3~2.41
    3 10月9日 110.4~156.1 66~74 46~56 0.1~23.5 57.4~74.4 9.8~12.2 0.47~2.22
    4 10月24日 109.87~141.89 62~71 50~59 0.1~13.2 56.6~75.7 9.4~12.8 0.84~1.66
    5 11月8日 87.44~136.11 62~71 48~57 0.1~3.2 65.1~76.3 9.5~13.1 0.4~1.4
    6 11月28日 108.36~151.73 60~75 46~58 0.1~1.8 58.6~75.7 10.7~13.3 0.41~0.97
    下载: 导出CSV

    表 2光谱评价指数相关性分析

    Table 2.Correlation analysis of spectral evaluation indices

    光谱评价指数 相关系数(r)
    0.967 8
    0.955 9
    0.991 6
    -0.975 3
    0.991 2
    -0.964 3
    下载: 导出CSV

    表 3成熟度指标与光谱指数建模结果

    Table 3.Modeling results of maturity index and spectral indices

    成熟度指标 rc RMSEC Bias rp RMSEP Bias
    叶绿素 0.98 0.49 -6.1×10-8 0.96 0.59 -0.014
    叶绿素/SSC 0.95 0.71 3.7×10-7 0.94 0.82 -0.041
    叶绿素/固酸比 0.92 0.97 -4.1×10-8 0.89 1.02 0.084
    下载: 导出CSV
  • [1] GB/T 12947-2008《鲜柑橘》[S]. GB/T 12947-2008(Fresh citrus)[S]. (in Chinese)
    [2] 应义斌, 饶秀勤, 马俊福, 等.柑橘成熟度机器视觉无损检测方法研究[J].农业工程学报, 2004, 20(2):144-147.http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_nygcxb200402034

    YING Y B, RAO X Q, MA J F, et al.. Methodology for nondestructive inspection of citrus maturity with machine vision[J]. Transactions of the CSAE, 2004, 20(2):144-147.(in Chinese)http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_nygcxb200402034
    [3] BURDON J, PIDAKALA P, MARTIN P, et al. Postharvest performance of the yellow-fleshed 'Hort16A' kiwifruit in relation to fruit maturation[J]. Postharvest Biology and Technology, 2014, 92:98-106.doi:10.1016/j.postharvbio.2014.01.004
    [4] NAVARRO G N, MARTINEZ R D, PEREZT O. Assessment of the impact of ethylene and ethylene modulators in citrus limon organogenesis[J]. Plant Cell, Tissue and Organ Culture, 2016, 127(2):405-415.doi:10.1007/s11240-016-1062-x
    [5] 王乐妍, 张冬仙, 章海军, 等.基于 光致发光光谱的果实成熟度测试方法研究[J].光谱学与光谱分析, 2008, 28(12):2772-2776.doi:10.3964/j.issn.1000-0593(2008)12-2772-05

    WANG L Y, ZHANG D X, ZHANG H J, et al.. Measurement of fruit maturity based on laser-induced photoluminescence spectrum[J]. Spectroscopy and Spectral Analysis, 2008, 28(12):2772-2776.(in Chinese)doi:10.3964/j.issn.1000-0593(2008)12-2772-05
    [6] JONATHAN V B, LAURENT T, BEN S, et al.. Stem water potential monitoring in pear orchards through worldview-2 multispectral imagery[J]. Remote Sensing, 2015, 7(8):9886-9903.http://www.academia.edu/23188991/Stem_Water_Potential_Monitoring_in_Pear_Orchards_through_WorldView-2_Multispectral_Imagery
    [7] ZHAO CH J, LI H L, GU X H, et al.. Effect of vertical distribution of crop structure and biochemical parameters of winter wheat on canopy reflectance characteristics and spectral indices[J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(1):236-247.https://www.researchgate.net/publication/309047816_Effect_of_Vertical_Distribution_of_Crop_Structure_and_Biochemical_Parameters_of_Winter_Wheat_on_Canopy_Reflectance_Characteristics_and_Spectral_Indices
    [8] RAYMOND E H, CRAIG S T D, LI L. Feasibility of estimating leaf water content using spectral indices from WorldView-3's near-infrared and shortwave infrared bands[J]. International Journal of Remote Sensing, 2016, 37(2):388-402.doi:10.1080/01431161.2015.1128575
    [9] 罗丹, 常庆瑞, 齐雁冰, 等.基于光谱指数的冬小麦冠层叶绿素含量估算模型研究[J].麦类作物学报, 2016, 36(9):1225-1233.http://www.cjae.net/EN/article/downloadArticleFile.do?attachType=PDF&id=18898

    LUO D, CHANG Q R, QI Y B, et al.. Estimation model for chlorophyll content in winter wheat canopy based on spectral indices[J]. Journal of Triticeae Crops, 2016, 36(9):1225-1233.(in Chinese)http://www.cjae.net/EN/article/downloadArticleFile.do?attachType=PDF&id=18898
    [10] NAGY A, PETER R, JANOS T. Spectral evaluation of apple fruit ripening and pigment content alteration[J]. Scientia Horticulturae, 2016, 201:256-264.doi:10.1016/j.scienta.2016.02.016
    [11] ALEJANDRA R F, MASSIMO N, EMILIO J F, et al.. Assessment of technological maturity parameters and anthocyanins in berries of cv. Sangiovese(Vitis vinifera L.) by a portable vis/NIR device[J]. Scientia Horticulturae, 2016, 209:229-235.doi:10.1016/j.scienta.2016.06.004
    [12] 刘燕德, 肖怀春, 孙旭东, 等.基于高光谱成像的柑橘黄龙病无损检测[J].农业机械学报, 2016, 47(11):231-238, 277.doi:10.6041/j.issn.1000-1298.2016.11.032

    LIU Y D, XIAO H CH, SUN X D, et al.. Non-destructive detection of citrus huanglong disease using hyperspectral image technique[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11):231-238, 277.(in Chinese)doi:10.6041/j.issn.1000-1298.2016.11.032
    [13] LI M, LV W B, ZHAO R, et al.. Non-destructive assessment of quality parameters in Friar' plums during low temperature storage using visible/near infrared spectroscopy[J]. Food Control, 2017, 73(B):1334-1341.https://www.sciencedirect.com/science/article/pii/S0956713516306107
    [14] 刘凯, 张立福, 杨杭, 等.面向对象分析的非结构化背景目标高光谱探测方法研究[J].光谱学与光谱分析, 2013, 33(6):1653-1657.http://kns.cnki.net/KCMS/detail/detail.aspx?filename=guan201306047&dbname=CJFD&dbcode=CJFQ

    LIU K, ZHANG L F, YANG H, et al.. Hyperspectral unstructured background target detection approach based on object-oriented analysis[J]. Spectroscopy and Spectral Analysis, 2013, 33(6):1653-1657.(in Chinese)http://kns.cnki.net/KCMS/detail/detail.aspx?filename=guan201306047&dbname=CJFD&dbcode=CJFQ
    [15] 田青, 罗金平, 刘晓红, 等.生物发光法细菌快速检测仪的研制及应用[J].光学精密工程, 2010, 18(4):771-778.http://www.eope.net/fileup/PDF/2009-0565.pdf

    TIAN Q, LUO J P, LIU X H, et al.. Development and application of rapid detecting instrument for bacteria based on bioluminescence[J]. Opt. Precision Eng., 2010, 18(4):771-778.(in Chinese)http://www.eope.net/fileup/PDF/2009-0565.pdf
    [16] TAMBURINI E, FERRARI G, MARCHETT M G, et al.. Development of FT-NIR models for the simultaneous estimation of chlorophyll and nitrogen content in fresh apple(Malus Domestica) leaves[J]. Sensors(Basel), 2015, 15(2):2662-2679.https://www.researchgate.net/profile/Sergio_Ferro/publication/271597970_Development_of_FT-NIR_Models_for_the_Simultaneous_Estimation_of_Chlorophyll_and_Nitrogen_Content_in_Fresh_Apple_Malus_Domestica_Leaves/links/54da02f30cf25013d043a655/Development-of-FT-NIR-Models-for-the-Simultaneous-Estimation-of-Chlorophyll-and-Nitrogen-Content-in-Fresh-Apple-Malus-Domestica-Leaves.pdf
    [17] GITELSON AA, MERZLYAK M N. Signature analysis of leaf reflectance spectra-algorithm development for remote sensing of chlorophyll[J]. Journal of Plant Physiology, 1996, 148(3-4):494-500.doi:10.1016/S0176-1617(96)80284-7
    [18] 王智宏, 张福东, 滕飞, 等.基于近红外波长组合快速检测油页岩含油率[J].光学精密工程, 2015, 23(2):371-377.http://cdmd.cnki.com.cn/Article/CDMD-10496-1017006928.htm

    WANG ZH H, ZHANG F D, TENG F, et al.. Rapid detection of oil yield of oil shale by combination of wavelengths in near infrared spectroscopy[J]. Opt. Precision Eng., 2015, 23(2):371-377.(in Chinese)http://cdmd.cnki.com.cn/Article/CDMD-10496-1017006928.htm
  • 加载中
图(15)/ 表(3)
计量
  • 文章访问数:1886
  • HTML全文浏览量:696
  • PDF下载量:486
  • 被引次数:0
出版历程
  • 收稿日期:2017-07-11
  • 修回日期:2017-08-13
  • 刊出日期:2018-02-01

目录

    /

      返回文章
      返回
        Baidu
        map