留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体13.5 nm极紫外光刻光源进展

宗楠,胡蔚敏,王志敏,王小军,张申金,薄勇,彭钦军,许祖彦

downloadPDF
宗楠, 胡蔚敏, 王志敏, 王小军, 张申金, 薄勇, 彭钦军, 许祖彦. 等离子体13.5 nm极紫外光刻光源进展[J]. , 2020, 13(1): 28-42. doi: 10.3788/CO.20201301.0028
引用本文: 宗楠, 胡蔚敏, 王志敏, 王小军, 张申金, 薄勇, 彭钦军, 许祖彦. 等离子体13.5 nm极紫外光刻光源进展[J]. , 2020, 13(1): 28-42.doi:10.3788/CO.20201301.0028
ZONG Nan, HU Wei-min, WANG Zhi-min, WANG Xiao-jun, ZHANG Shen-jin, BO Yong, PENG Qin-Jun, XU Zu-yan. Research progress on laser-produced plasma light source for 13.5 nm extreme ultraviolet lithography[J]. Chinese Optics, 2020, 13(1): 28-42. doi: 10.3788/CO.20201301.0028
Citation: ZONG Nan, HU Wei-min, WANG Zhi-min, WANG Xiao-jun, ZHANG Shen-jin, BO Yong, PENG Qin-Jun, XU Zu-yan. Research progress on laser-produced plasma light source for 13.5 nm extreme ultraviolet lithography[J].Chinese Optics, 2020, 13(1): 28-42.doi:10.3788/CO.20201301.0028

等离子体13.5 nm极紫外光刻光源进展

doi:10.3788/CO.20201301.0028
基金项目:

国家重点研发项目No.2016YFB0402103

中科院关键技术团队项目No.GJJSTD20180004

国家重大科研装备研制项目No.ZDYZ2012-2

国家重大科学仪器设备开发专项No.2012YQ120048

国家自然科学重点基金项目No.61535013

中科院理化所所长基金No.Y8A9021H11

详细信息
    作者简介:

    宗 楠(1982—),女,辽宁阜新人,博士, 2010年于中国科学院物理研究所获得光学博士学位,现为中国科学院理化技术研究所副研究员,硕士生导师,主要从事高功率固体 及非线性频率变换技术研究。 E-mail:zongnan@mail.ipc.ac.cn

    胡蔚敏(1996—),男,河南濮阳人,硕士研究生,2018年于中国地质大学(武汉)获得学士学位,现为中国科学院理化技术研究所光学硕士研究生,主要从事 与物质的相互作用方面的研究。E-mail:huweimin18@mails.ucas.ac.cn

    彭钦军(1976-),男,四川南充人,博士,2006年于中国科学院物理研究所获得光学博士学位,现为中国科学院理化技术研究所研究员,博士生导师,主要从事 物理与技术研究。 E-mail:pengqinjun@163.com

  • 中图分类号:O432.1

Research progress on laser-produced plasma light source for 13.5 nm extreme ultraviolet lithography

Funds:

Supported by National Key Research and Development Project of ChinaNo.2016YFB0402103

Key Technology Team Project of Chinese Academy of SciencesNo.GJJSTD20180004

National Major Research and Development Project of ChinaNo.ZDYZ2012-2

National Major Scientific Instruments and Equipment Development Project of ChinaNo.2012YQ120048

National Natural Science Foundation of ChinaNo.61535013

Fund of Technical Institute of Physics and Chemistry, Chinese Academy of SciencesNo.Y8A9021H11

More Information
  • 摘要:半导体产业是高科技、信息化时代的支柱。光刻技术,作为半导体产业的核心技术之一,已成为世界各国科研人员的重点研究对象。本文综述了 等离子体13.5 nm极紫外光刻的原理和国内外研究发展概况,重点介绍了其 源、辐射靶材和多层膜反射镜等关键系统组成部分。同时,指出了在提高 等离子体13.5 nm极紫外光源输出功率的研究进程中所存在的主要问题,包括提高转换效率和减少光源碎屑。特别分析了目前已实现百瓦级输出的日本Gigaphoton公司和荷兰的ASML公司的极紫外光源装置。最后对该项技术的发展前景进行了总结与展望。

  • 图 1LPP-EUV光源示意图

    Figure 1.Schematic of laser-produced plasma for EUV light source

    图 2DPP-EUV光源示意图

    Figure 2.Schematic of discharge-produced plasma for EUV light source

    图 3Nd:YAG (a)与CO2 (b)等离子体 能量吸收区域和极紫外辐射区域

    Figure 3.Laser energy absorption regions and extreme ultraviolet radiation regions from different laser-produced plasma.(a) Nd:YAG laser and (b) CO2laser

    图 4ASML-EUVL-NXE系列产品

    Figure 4.ASML-EUVL-NXE series of products

    图 5大功率短脉冲CO2 器的系统示意图

    Figure 5.System configuration of high power short pulsed CO2laser

    图 6液滴发生装置示意图

    Figure 6.Schematic view of the droplet generator

    表 1Gigaphoton公司EUV光源产品参数

    Table 1.Specifications of Gigaphoton EUV system

    Proto#1
    Proof of Concept
    Proto#2
    Key Technology
    Pilot#1
    HVM Ready
    Target Performance EUV power 25 W >100 W 250 W
    CE 3% 4.0% 5.0%
    Pulse Rate 100 kHz 100 kHz 100 kHz
    Output Angle Horizontal 62°upper 62°upper
    Availability ~1 week ~1 week >75%
    Technology Droplet Generator 20~25 μm < 20 μm < 20 μm
    CO2Laser 5 kW 20 kW 27 kW
    Pre-pulse Laser Picosecond picosecond picosecond
    Collector Mirror Lifetime Test platform 10 days >3 months
    下载: 导出CSV
  • [1] 李小强. 辅助放电Sn等离子体13.5 nm极紫外辐射研究[D].哈尔滨: 哈尔滨工业大学, 2014.

    LI X Q. Research of 13.5 nm extreme ultraviolet radiation from tin plasma produced by laser-assisted discharge[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
    [2] HUTCHESON G D. Moore's law, lithography, and how optics drive the semiconductor industry[J].Proceedings of SPIE, 2018, 10583: 1058303.doi:10.1117/12.210341.full
    [3] PIRATI A, VAN SHOOT J, TROOST K,et al. The future of EUV lithography: enabling Moore's law in the next decade[J].Proceedings of SPIE, 2017, 10143: 101430G.http://cn.bing.com/academic/profile?id=4c04f740f379fcbd6ae165c8ce6fa31f&encoded=0&v=paper_preview&mkt=zh-cn
    [4] DAVID A.Soft X-Rays and EUV Radiation[M]. Cambridge: Cambridge University Press, 2007: 17-20.
    [5] 楼祺洪, 袁志军, 张海波.光刻技术的历史与现状[J].科学, 2017, 69(3): 32-36.http://d.old.wanfangdata.com.cn/Periodical/kx201703008

    LOU Q H, YUAN ZH J, ZHANG H B. The history and present situation of lithography technology[J].Science, 2017, 69(3): 32-36. (in Chinese)http://d.old.wanfangdata.com.cn/Periodical/kx201703008
    [6] LEVINSON H J.Principles of Lithography[M]. 3rd ed. Washington: SPIE Press, 2011: 47-50.
    [7] 万南. ASML出货新光刻机NXT2000i: 用于7nm/5nm DUV工艺[EB/OL]. (2018-08-03)[2019-02-02].http://news.mydrivers.com/1/589/589237.htm.

    WAN N. ASML ships new lithography machine NXT2000i: for 7nm/5nm DUV process[EB/OL]. (2018-08-03)[2019-02-02].http://news.mydrivers.com/1/589/589237.htm. (in Chinese)
    [8] 耿永友, 邓常猛, 吴谊群.极紫外光刻材料研究进展[J].红外与 工程, 2014, 43(6): 1850-1856.doi:10.3969/j.issn.1007-2276.2014.06.027

    GENG Y Y, DENG CH M, WU Y Q. Recent progress of extreme ultraviolet resists[J].Infrared and Laser Engineering, 2014, 43(6): 1850-1856. (in Chinese)doi:10.3969/j.issn.1007-2276.2014.06.027
    [9] 窦银萍, 孙长凯, 林景全. 等离子体极紫外光刻光源[J].中国光学, 2013, 6(1): 20-33.//www.illord.com/CN/abstract/abstract8894.shtml

    DOU Y P, SUN CH K, LIN J Q. Laser-produced plasma light source for extreme ultraviolet lithography[J].Chinese Optics, 2013, 6(1): 20-33. (in Chinese)//www.illord.com/CN/abstract/abstract8894.shtml
    [10] 张福昌, 李艳秋. EUV光刻中 等离子体光源的发展[J].微细加工技术, 2006(5): 1-7, 12.http://d.old.wanfangdata.com.cn/Periodical/wxjgjs200605001

    ZHANG F CH, LI Y Q. Development of laser produced plasma source for EUV lithography[J].Microfabrication Technology, 2006(5): 1-7, 12. (in Chinese)http://d.old.wanfangdata.com.cn/Periodical/wxjgjs200605001
    [11] TICHENOR D A, RAY-CHAUDHURI A K, REPLOGLE W C,et al. System integration and performance of the EUV engineering test stand[J].Proceedings of SPIE, 2001, 4343: 19-37.doi:10.1117/12.436665
    [12] MIURA T, MURAKAMI K, SUZUKI K,et al. Nikon EUVL development progress update[J].Proceedings of SPIE, 2008, 6921: 69210M.doi:10.1117/12.772444
    [13] 芯智讯.从全球光刻机巨头ASML的成长史, 看中国半导体装备业的发展[EB/OL]. (2018-05-23)[2019-01-22].http://www.icsmart.cn/19096/.

    XIN ZH X. Focusing on the development of China's semiconductor equipment industry from the growth history of global lithography company-ASML[EB/OL]. (2018-05-23)[2019-01-22].http://www.icsmart.cn/19096/. (in Chinese)
    [14] 蔡懿, 王文涛, 杨明, 等.基于强 辐照固体锡靶产生极紫外光源的实验研究[J].物理学报, 2008, 57(8): 5100-5104.doi:10.3321/j.issn:1000-3290.2008.08.069

    CAI Y, WANG W T, YANG M,et al. Experimental study on extreme ultraviolet light generation from high power laser-irradiated tin slab[J].Acta Physica Sinica, 2008, 57(8): 5100-5104. (in Chinese)doi:10.3321/j.issn:1000-3290.2008.08.069
    [15] CHEN H, WANG X B, DUAN L,et al. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma[J].Journal of Applied Physics, 2015, 117(19): 193302.doi:10.1063/1.4921532
    [16] 吴文娟.极紫外和软X射线窄带多层膜的研究[D].上海: 同济大学, 2007.

    WU W J. The study of extreme ultraviolet and Soft X-Ray narrowband multilayers[D]. Shanghai: Tongji University, 2007. (in Chinese)
    [17] BENSCHOP J, BANINE V, LOK S,et al. Extreme ultraviolet lithography: status and prospects[J].Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2008, 26(6): 2204-2207.http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227888465/
    [18] 匡尚奇, 李硕, 杨海贵, 等.极紫外宽带多层膜反射镜离散化膜系的设计与制备[J].光学 精密工程, 2018, 26(10): 2395-2406.http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201810007

    KUANG SH Q, LI SH, YANG H G,et al. Design and fabrication of EUV broadband multilayer mirrors with discrete thicknesses[J].Opt. Precision Eng., 2018, 26(10): 2395-2406. (in Chinese)http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201810007
    [19] BAJT S, ALAMEDA J B, BARBEE JR T W,et al. Improved reflectance and stability of Mo/Si multilayer[J].Proceedings of SPIE, 2001, 4506: 65-75.doi:10.1117/12.450946
    [20] PELIZZO M G, SUMAN M, MONACO G,et al. High performance EUV multilayer structures insensitive to capping layer optical parameters[J].Optics Express, 2008, 16(19): 15228-15237.doi:10.1364/OE.16.015228
    [21] FOMENKOV I. EUV source for high volume manufacturing: performance at 250 W and key technologies for power scaling (Keynote presentation)[R]. Dublin, Ireland, 2017.
    [22] KAWASUJI Y, NOWAK K M, HORI T,et al. Key components technology update of the 250 W high-power LPP-EUV light source[J].Proceedings of SPIE, 2017, 10143: 101432G.
    [23] HENKE B L, GULLIKSON E M, DAVIS J C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30, 000 eV, Z = 1-92[J].Atomic Data and Nuclear Data Tables, 1993, 54(2): 181-342.doi:10.1006/adnd.1993.1013
    [24] BANINE V, BENSCHOP J P, LEENDERS M,et al. Relationship between an EUV source and the performance of an EUV lithographic system[J].Proceedings of SPIE, 2000, 3997: 126-135.doi:10.1117/12.390048
    [25] SCHRIEVER G, MAGER S, NAWEED A,et al. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy[J].Applied Optics, 1998, 37(7): 1243-1248.doi:10.1364/AO.37.001243
    [26] 兰慧. Sn和SnO2靶 等离子体特性的研究[D].武汉: 华中科技大学, 2016.

    LAN H. Research on the characteristics of laser produced Sn and SnO2plasma[D]. Wuhan: Huazhong University of Science & Technology, 2016. (in Chinese)
    [27] RAJYAGURU C, HIGASHIGUCHI T, KOGA M,et al. Parametric optimization of a narrow-band 13.5-nm emission from a Li-based liquid-jet target using dual nano-second laser pulses[J].Applied Physics B, 2005, 80(4-5): 409-412.doi:10.1007/s00340-005-1777-6
    [28] NAGANO A, INOUE T, NICA P E,et al. Extreme ultraviolet source using a forced recombination process in lithium plasma generated by a pulsed laser[J].Applied Physics Letters, 2007, 90(15): 151502.doi:10.1063/1.2719672
    [29] TANAKA H, AKINAGA K, TAKAHASHI A,et al. Emission characteristics of EUV light source by CO2laser-produced Xe and Sn plasma[J].Proceedings of SPIE, 2004, 5448: 737-748.doi:10.1117/12.547372
    [30] HANSSON B A M, HERTZ H M. Liquid-jet laser-plasma extreme ultraviolet sources: from droplets to filaments[J].Journal of Physics D: Applied Physics, 2004, 37(23): 3233-3243.doi:10.1088/0022-3727/37/23/004
    [31] CUMMINGS A, O'SULLIVAN G, DUNNE P,et al. Variable composition laser-produced Sn plasmas-a study of their time-independent ion distributions[J].Journal of Physics D: Applied Physics, 2004, 37(17): 2376-2384.doi:10.1088/0022-3727/37/17/006
    [32] KIEFT E R, GARLOFF K, VAN DER MULLEN J J A M,et al. Comparison of experimental and simulated extreme ultraviolet spectra of xenon and tin discharges[J].Physical Review E, 2005, 71(3): 036402.doi:10.1103/PhysRevE.71.036402
    [33] TOMIE T, AOTA T, UENO Y,et al. Use of tin as a plasma source material for high conversion efficiency[J].Proceedings of SPIE, 2003, 5037: 147-155.doi:10.1117/12.483751
    [34] TAO Y, NISHIMURA H, OKUNO T,et al. Dynamic imaging of 13.5 nm extreme ultraviolet emission from laser-produced Sn plasmas[J].Applied Physics Letters, 2005, 87(24): 241502.doi:10.1063/1.2139990
    [35] SHIMADA Y, NISHIMURA H, NAKAI M,et al. Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams[J].Applied Physics Letters, 2005, 86(5): 051501.doi:10.1063/1.1856697
    [36] YUSPEH S, SEQUOIA K L, TAO Y,et al. Optimization of the size ratio of Sn sphere and laser focal spot for an extreme ultraviolet light source[J].Applied Physics Letters, 2008, 93(22): 221503.doi:10.1063/1.3036956
    [37] HARILAL S S, SIZYUK T, SIZYUK V,et al. Efficient laser-produced plasma extreme ultraviolet sources using grooved Sn targets[J].Applied Physics Letters, 2010, 96(11): 111503.doi:10.1063/1.3364141
    [38] CUMMINS T, O'GORMAN C, DUNNE P,et al. Colliding laser-produced plasmas as targets for laser-generated extreme ultraviolet sources[J].Applied Physics Letters, 2014, 105(4): 044101.doi:10.1063/1.4891762
    [39] BÖWERING N R, FOMENKOV I V, BRANDT D C,et al. Performance results of laser-produced plasma test and prototype light sources for EUV lithography[J].Journal of Micro/Nanolithography, MEMS, and MOEMS, 2009, 8(4): 041504.doi:10.1117/1.3224942
    [40] MIZOGUCHI H, NAKARAI H, ABE T,et al. Performance of one hundred watt HVM LPP-EUV source[J].Proceedings of SPIE, 2015, 9422: 94220C.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0215024557
    [41] WHITE J, DUNNE P, HAYDEN P,et al. Optimizing 13.5 nm laser-produced tin plasma emission as a function of laser wavelength[J].Applied Physics Letters, 2007, 90(18): 181502.doi:10.1063/1.2735944
    [42] AOTA T, NAKAI Y, FUJIOKA S,et al. Characterization of extreme ultraviolet emission from tin-droplets irradiated with Nd:YAG laser plasmas[J].Proceedings of SPIE, 2008, 6921: 69212T.doi:10.1088/1742-6596/112/4/042064
    [43] ANDO T, FUJIOKA S, NISHIMURA H,et al. Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas[J].Applied Physics Letters, 2006, 89(15): 151501.doi:10.1063/1.2361260
    [44] HARILAL S S, TILLACK M S, TAO Y,et al. Extreme-ultraviolet spectral purity and magnetic ion debris mitigation by use of low-density tin targets[J].Optics Letters, 2006, 31(10): 1549-1551.doi:10.1364/OL.31.001549
    [45] BANINE V Y, KOSHELEV K N, SWINKELS G H P M. Physical processes in EUV sources for microlithography[J].Journal of Physics D: Applied Physics, 2011, 44(25): 253001.doi:10.1088/0022-3727/44/25/253001
    [46] ENDO A, ABE T, HOSHINO H,et al. CO2laser-produced Sn plasma as the solution for high-volume manufacturing EUV lithograph[J].Proceedings of SPIE, 2007, 6703: 670309.doi:10.1117/12.732254
    [47] ENDO A, KOMORI H, UENO Y,et al. Laser-produced plasma source development for EUV lithography[J].Proceedings of SPIE, 2009, 7271: 727108.doi:10.1117/12.813639
    [48] FUJIOKA S, SHIMOMURA M, SHIMADA Y,et al. Pure-tin microdroplets irradiated with double laser pulses for efficient and minimum-mass extreme-ultraviolet light source production[J].Applied Physics Letters, 2008, 92(24): 241502.doi:10.1063/1.2948874
    [49] FREEMAN J R, HARILAL S S, VERHOFF B,et al. Laser wavelength dependence on angular emission dynamics of Nd:YAG laser-produced Sn plasmas[J].Plasma Sources Science and Technology, 2012, 21(5): 055003.doi:10.1088/0963-0252/21/5/055003
    [50] LETARDI T, LO D, ZHENG C E. Particle dynamics of debris produced during laser-plasma soft X-ray generation[J].Journal of Applied Physics, 2001, 89(2): 1458-1462.doi:10.1063/1.1334365
    [51] YANAGIDA T, NAGANO H, WADA Y,et al. Characterization and optimization of tin particle mitigation and EUV conversion efficiency in a laser produced plasma EUV light source[J].Proceedings of SPIE, 2011, 7969: 79692T.doi:10.1117/12.879189
    [52] NⅡMI G, UENO Y, NISHIGORI K,et al. Experimental evaluation of a stopping power of high-energy ions from a laser-produced plasma by a magnetic field[J].Proceedings of SPIE, 2003, 5037: 370-377.doi:10.1117/12.483747
    [53] HARILAL S S, O'SHAY B, TAO Y,et al. Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects[J].Applied Physics B, 2007, 86(3): 547-553.doi:10.1007/s00340-006-2532-3
    [54] SUN Y B, LIN J Q, GAO X,et al. Characteristics of ion debris from laser-produced tin plasma and mitigation of energetic ions by ambient gas[J].Science China Physics, Mechanics and Astronomy, 2012, 55(3): 392-395.doi:10.1007/s11433-012-4644-6
    [55] MIZOGUCHI H, NAKARAI H, ABE T,et al. Performance of one hundred watt HVM LPP-EUV source[J].Proceedings of SPIE, 2015, 9422: 94220C.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0215024557
    [56] 尹志坚. EUV光刻机: ASML 2018年总销量18台, 计划明年30台[EB/OL]. (2019-01-25)[2019-02-22]. http://www.elecfans.com/d/858465.html. YIN ZH J. EUV lithography machine: total sales of ASML EUV lithography machine is 18 in 2018, and that number is projected to increase to 30 in 2019[EB/OL]. (2019-01-25)[2019-02-22].http://www.elecfans.com/d/858465.html. (in Chinese)
    [57] 旺材芯片. ASML今年将推新一代EUV光刻机NXE: 3400C产能170片/小时[EB/OL]. (2019-01-25)[2019-02-22].https://www.xianjichina.com/special/detail_382932.html.

    WANG C X P. ASML will push a new generation of EUV lithography machine NXE this year: 3400C capacity 170 pieces/hour[EB/OL]. (2019-01-25)[2019-02-22].https://www.xianjichina.com/special/detail_382932.html. (in Chinese)
    [58] MIZOGUCHI H, NAKARAI H, ABE T,et al. High power LPP-EUV source with long collector mirror lifetime for high volume semiconductor manufacturing[J].Proceedings of SPIE, 2018, 10583: 1058318.http://cn.bing.com/academic/profile?id=f8eff57ec8ecff5479d1b3b2737f1fcf&encoded=0&v=paper_preview&mkt=zh-cn
    [59] NOWAK K M, OHTA T, SUGANUMA T,et al. Multiline short-pulse solid-state seeded carbon dioxide laser for extreme ultraviolet employing multipass radio frequency excited slab amplifier[J].Optics Letters, 2013, 38(6): 881-883.doi:10.1364/OL.38.000881
    [60] NOWAK K M, OHTA T, SUGANUMA T,et al. Spectral characteristics of quantum-cascade laser operating at 10.6 μm wavelength for a seed application in laser-produced-plasma extreme UV source[J].Optics Letters, 2012, 37(22): 4765-4767.doi:10.1364/OL.37.004765
    [61] MIZOGUCHI H, NAKARAI H, ABE T,et al. Performance of 250 W high-power HVM LPP-EUV source[J].Proceedings of SPIE, 2017, 10143: 101431J.doi:10.1117/12.2256652.full
    [62] YOICHI T, TATSUYA Y, JUNICHI N,et al. Efficient pulse amplification using a transverse-flow CO2laser for extreme ultraviolet light source[J].Optics Letters, 2012, 37(16):3300.doi:10.1364/OL.37.003300
    [63] PIRATI A, PEETERS R, SMITH D,et al. EUV lithography performance for manufacturing: status and outlook[J].Proceedings of SPIE, 2016, 9776: 97760A.https://www.researchgate.net/publication/299644651_EUV_lithography_performance_for_manufacturing_status_and_outlook?ev=auth_pub
    [64] 徐明飞, 庞武斌, 徐象如, 等.高数值孔径投影光刻物镜的光学设计[J].光学 精密工程, 2016, 24(4): 740-746.http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201604008

    XU M F, PANG W B, XU X R,et al. Optical design of high-numerical aperture lithographic lenses[J].Opt. Precision Eng., 2016, 24(4): 740-746. (in Chinese)http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201604008
    [65] 中国电子报社.解决集成电路"掐脖子"问题, 光刻机这篇文章怎么做?[EB/OL].(2018-07-12)[2019-03-26].http://www.sohu.com/a/240821218_464075.

    CHINA ELECTRONIC NEWSPAPER. To solve the "neck pinching" problem of integrated circuits, what should photolithography do?[EB/OL]. (2018-07-12)[2019-03-26].http://www.sohu.com/a/240821218_464075. (in Chinese)
    [66] 半导体行业联盟.国产22 nm光刻机, 可制造10纳米芯片![EB/OL]. (2018-11-30)[2019-02-26].http://www.sohu.com/a/278788826_756356.

    SEMICONDUCTOR INDUSNY ALLIANCE. Domestic 22nm lithography machine can manufacture 10 nanometer chips![EB/OL]. (2018-11-30)[2019-02-26].http://www.sohu.com/a/278788826_756356. (in Chinese)
  • 加载中
图(6)/ 表(1)
计量
  • 文章访问数:6899
  • HTML全文浏览量:4157
  • PDF下载量:838
  • 被引次数:0
出版历程
  • 收稿日期:2019-04-11
  • 修回日期:2019-05-14
  • 刊出日期:2020-02-01

目录

    /

      返回文章
      返回
        Baidu
        map