Application of near space platform based photoelectric detecting system to space situation awareness
-
摘要:介绍了空间态势感知的概念,以及地基、天基光电探测系统和临近空间平台的特点及研究现状,对不同平台光电探测系统的性能与特点进行了分析。分析表明,地基光电探测系统的观测质量受地球大气湍流和大气吸收的影响,有其极限探测能力,且大部分大气扰动发生在大气最底层的对流层;天基光电探测系统虽然可不受大气湍流的扰动,但光电探测平台的探测时间只有地基望远镜的1/3,且耗资巨大;临近空间平流层平台(飞艇)光电探测系统不受对流层大气扰动的影响,其分辨力可显著提高,并且具有灵活布站等优势。基于临近平台光电探测系统的优势,综述了发展临近平台空间光电探测系统的可行性,归纳总结了将其应用于空间态势感知的技术要求,涉及材料、控制、能源和高能物理等。Abstract:The concept of space situation awareness is introduced and the present situations of photoelectric detecting systems on earth, in space and near space platforms are described. Then the performance and the characteristics of photoelectric detecting systems on earth, in space and near space platforms are analyzed. Analysis results indicate that the image quality of photoelectric detecting system on earth platform is limited by the atmospheric turbulence and atmospheric absorption, and most turbulence occurs in the troposphere and the lowest section of atmosphere. The photoelectric detecting system on the space platform can not be effected by atmospheric turbulence, but its detecting time is only 1/3 that of the ground telescopy. However, the photoelectric detecting system on the near space platform can not be disturbed by atmospheric troposphere, and its angular resolution could be greatly improved. On the basis of the advantages of the near space platform, the feasibility of developing the detecting system on near space platform is reviewed and the key technologies of the photoelectric detecting system based on the near space platform including materials, control technology, energy sources and high-energy physics are summarized in detail.
-
[1] 高琳,刘贺军,宋耀东. 美国空间攻防装备发展现状和趋势[J]. 电光系统 ,2009(2):43-46. GAO L,LIU H J,SONG Y D. Present status and development trends of space attack and defense equipment of USA[J].Electronic and Electro-optical Systems,2009(2):43-46.(in Chinese) [2] FUGATE R Q. The starfire optical range 3.5-m adaptive optical telescope[J].SPIE,2003,4837:934-943. [3] 姜文汉. 自适应光学技术[J]. 自然杂志 ,2006(1):7-13. JIANG W H. Adaptive optical technology[J].Chinese J. Nature,2006(1):7-13.(in Chinese) [4] 吴鑫基,温学诗.现代天文学十五讲[M]. 北京:北京大学出版社, 2005. WU X J,WEN X SH.Fifteen Prelection of Modern Astronomy[M]. Beijing:Peking University Press,2005.(in Chinese) [5] 张逸新,迟泽英.光波在大气中的传输与成像 [M]. 北京:国防工业出版社,2005. ZHANG Y X,CHI Z Y.The Transmission of Light in the Atmosphere and Imaging[M]. Beijing:National Defence Industry Press,2005.(in Chinese) [6] HARRISON D C,CHOW J C. Space-based visible sensor on MSX satellite[J].SPIE,1994,2217:377-387. [7] STOKES G H,von BRAUN C,STRIDHARAN R. The space-based visible program[J].Lincoln Laboratory J.,1998,11:205-238. [8] ANDREAS J E. Space-based Infrared System(SBIRS) system of systems[J].IEEE,1997,5:429-438. [9] WU A. SBIRS high payload LOS attitude determination and calibration[J].IEEE,1998,5:243-253. [10] SLATTERY J E,COOLEY P R. Space-based Infrared Satellite System(SBIRS) requirements management[J].IEEE,1998,5:223-232. [11] GARNHOLZ D B. A proposal for a large-aperture, airship-mounted, stratospheric telescope . 12thLighter-Than-Air Systems Technology Conference.San Francisco,USA,June 1997:1-11. [12] BERNASCONI P N,RUST D M,EATON H A,et al. A ballon-borne telescope for high resolution solar imaging and polarimetry[J].SPIE,2000,4014:214-225. [13] JONATHAN McD. Mission update[J].Sky&Telescope,1999,98(4):16-24. [14] BECKLIN E E,GEHRZ R D. Stratospheric Observatory for Infrared Astronomy(SOFIA)[J].SPIE,2009,7453:1-12. [15] GULL G E,SAVAGE M L. An introduction to airworthiness for science instruments onboard SOFIA[J].SPIE,2000,4014:183-194. [16] ERDMANN M,BITTNER H,HABERLER P. Development and construction of the optical system for the airborne observatory SOFIA[J].SPIE,2000,4014:306-318. [17] LEE M,SMITH S,ANDROULAKAKIS S. The high altitude Lighter Than Air Airship Efforts at the US Army Space and missile defense command/army force strategic command . 18th AIAA Lighter-Than-Air Systems Technology Conference,Seattle,USA,4-7 May 2009:1-26. [18] ONDA M. Design considerations on stratospheric long endurance LTA platform . 13th AIAA,Lighter-Than-Air Systems Technology Conference,June 1999:204-209.
点击查看大图
计量
- 文章访问数:4858
- HTML全文浏览量:516
- PDF下载量:3357
- 被引次数:0