Citation: | LÜ Xiao-lei, ZHAO Ji-guang, DU Xiao-ping, SONG Yi-shuo, ZHANG Peng, ZHANG Jian-wei. Research progress on the modulation properties of new electro-optic materials[J].Chinese Optics, 2021, 14(3): 503-515.doi:10.37188/CO.2020-0039 |
[1] |
赵炜渝, 邢宁. 美国航天创新项目发展分析[J]. 中国航天,2015(3):23-27.
ZHAO W Y, XING N. Analysis of the development of US space innovation projects[J].
Aerospace China, 2015(3): 23-27. (in Chinese)
|
[2] |
王雪瑶, 宋博. 美国国防高级研究计划局启动“地球同步轨道卫星自主服务”项目[J]. 国际太空,2016(11):33-38.
WANG X Y, SONG B. U.S. DARPA started the RSGS program[J].
Space International, 2016(11): 33-38. (in Chinese)
|
[3] |
TICKER R L, CEPOLLINA F, REED B B. NASA’s in-space robotic servicing[C].
Proceedings of the AIAA SPACE 2015 Conference and Exposition,
AAIA, 2015: 4644.
|
[4] |
STRUBE M, HENRY R, SKELETON E, et al.. Raven: an on-orbit relative navigation demonstration using international space station visiting vehicles[C].
American Astronautical Society Guidance and Control Conference,
American Astronautical Society, 2015.
|
[5] |
GALANTE J M, VAN EEPOEL J, D’SOUZA C,
et al.. Fast Kalman filtering for relative spacecraft position and attitude estimation for the raven ISS hosted payload[R]. AAS 16-045, 2016.
|
[6] |
FORSHAW J L, AGLIETTI G S, NAVARATHINAM N,
et al. Remove DEBRIS: An in-orbit active debris removal demonstration mission[J].
Acta Astronautica, 2016, 127: 448-463.
doi:10.1016/j.actaastro.2016.06.018
|
[7] |
MCMANAMON P F, BANKS P S, BECK J D,
et al. Comparison of flash lidar detector options[J].
Optical Engineering, 2017, 56(3): 031223.
doi:10.1117/1.OE.56.3.031223
|
[8] |
ECKERSLEY S, SAUNDERS C, LOBB D, et al.. Future rendezvous and docking missions enabled by low-cost but safety compliant Guidance Navigation and Control (GNC) architectures[C].
Proceedings of The 15th Reinventing Space Conference,
British Interplanetary Society, 2017.
|
[9] |
陈臻. 基于偏振调制的 三维成像方法研究[D]. 北京: 中国科学院大学, 2017.
CHEN ZH. Research on three-dimensional active imaging with polarization -modulated method[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)
|
[10] |
CHEN ZH, LIU B, LIU E H,
et al. Electro-optic modulation methods in range-gated active imaging[J].
Applied Optics, 2016, 55(3): A184-A190.
doi:10.1364/AO.55.00A184
|
[11] |
ZHANG P, DU X P, ZHAO J G,
et al. High resolution flash three-dimensional LIDAR systems based on polarization modulation[J].
Applied Optics, 2017, 56(13): 3889-3894.
doi:10.1364/AO.56.003889
|
[12] |
JO S, KONG H J, BANG H,
et al. High resolution three-dimensional flash LIDAR system using a polarization modulating Pockels cell and a micro-polarizer CCD camera[J].
Optics Express, 2016, 24(26): A1580-A1585.
doi:10.1364/OE.24.0A1580
|
[13] |
何子清, 葛超, 王春阳. 基于最小二乘配置的光学镜头畸变校正方法[J]. 液晶与显示,2019,34(3):302-309.
doi:10.3788/YJYXS20193403.0302
HE Z Q, GE CH, WANG CH Y. Optical lens distortion correction method based on least square configuration[J].
Chinese Journal of Liquid Crystals and Displays, 2019, 34(3): 302-309. (in Chinese)
doi:10.3788/YJYXS20193403.0302
|
[14] |
于国栋. 靶场光学镜头畸变校正方法研究[J]. 液晶与显示,2017,32(3):227-233.
doi:10.3788/YJYXS20173203.0227
YU G D. Distortion correction method for optical lens of the range[J].
Chinese Journal of Liquid Crystals and Displays, 2017, 32(3): 227-233. (in Chinese)
doi:10.3788/YJYXS20173203.0227
|
[15] |
李新娥, 班皓, 沙巍, 等. 一种大视场TDICCD相机的多传感器图像配准方法[J]. 液晶与显示,2014,29(4):644-648.
doi:10.3788/YJYXS20142904.0644
LI X E, BAN H, SHA W,
et al. Registration method of large field view and multi-sensor images of TDICCD cameras[J].
Chinese Journal of Liquid Crystals and Displays, 2014, 29(4): 644-648. (in Chinese)
doi:10.3788/YJYXS20142904.0644
|
[16] |
王越, 蒋毅坚. 3 m点群晶体纵向压电性能的研究[J]. 人工晶体学报,2004,33(3):399-402.
WANG Y, JIANG Y J. Crystal orientation dependence of longitudinal piezoelectric properties for 3 m point group crystals[J].
Journal of Synthetic Crystals, 2004, 33(3): 399-402. (in Chinese)
|
[17] |
BU Y M, ZENG Z Y, DU X P,
et al. Theoretical research on new photoelectric mixing technology based on electro-optical modulation[J].
Proceedings of SPIE, 2018, 10964: 109640I.
|
[18] |
CHANG Y C, WANG CH, YIN SH ZH,
et al. Kovacs effect enhanced broadband large field of view electro-optic modulators in nanodisordered KTN crystals[J].
Optics Express, 2013, 21(15): 17760-17768.
doi:10.1364/OE.21.017760
|
[19] |
王菲菲, 邵喜斌. 负型液晶在ADS广视角技术中的应用[J]. 液晶与显示,2016,31(8):760-767.
doi:10.3788/YJYXS20163108.0760
WANG F F, SHAO X B. Application of negative LC in ADS wide view technology[J].
Chinese Journal of Liquid Crystals and Displays, 2016, 31(8): 760-767. (in Chinese)
doi:10.3788/YJYXS20163108.0760
|
[20] |
YADA M, ISHIHARA Y, NAOE T,
et al.. Noise reduction method for electro-optic measurement system using variable gain amplifier[C].
Proceedings of 2017 IEEE Region 10 Conference,
IEEE, 2017: 1969-1972.
|
[21] |
ZHANG J, NELSON J S, CHEN ZH P. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator[J].
Optics Letters, 2015, 30(2): 147-149.
|
[22] |
PAN X J, CAI Y, ZENG X K,
et al. A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio[J].
Optics Communications, 2017, 391: 135-140.
doi:10.1016/j.optcom.2017.01.021
|
[23] |
卜禹铭, 杜小平, 曾朝阳, 等. 无扫描 三维成像雷达研究进展及趋势分析[J]. 中国光学,2018,11(5):711-727.
doi:10.3788/CO.20181105.0711
BU Y M, DU X P, ZENG ZH Y,
et al. Research progress and trend analysis of non-scanning laser 3D imaging radar[J].
Chinese Optics, 2018, 11(5): 711-727. (in Chinese)
doi:10.3788/CO.20181105.0711
|
[24] |
SHINAGAWA M, KOBAYASHI J, YAGI S,
et al. Sensitive electro-optic sensor using KTa
1−xNb
xO
3crystal[J].
Sensors and Actuators A:
Physical, 2013, 192: 42-48.
doi:10.1016/j.sna.2012.12.003
|
[25] |
罗豪甦, 徐海清, 王评初, 等. 新型压电单晶PMNT的生长和性能研究[J]. 哈尔滨理工大学学报,2002,7(6):98-99, 104.
LUO H S, XU H Q, WANG P CH,
et al. Growth and properties of a new typical piezoelectric sircgle crystal PMNT[J].
Journal of Harbin University of Science and Technology, 2002, 7(6): 98-99, 104. (in Chinese)
|
[26] |
LIN Y T, REN B, ZHAO X Y,
et al. Large quadratic electro-optic properties of ferroelectric base 0.92Pb(Mg
1/3Nb
2/3)O
3-0.08PbTiO
3single crystal[J].
Journal of Alloys and Compounds, 2010, 507(2): 425-428.
doi:10.1016/j.jallcom.2010.06.068
|
[27] |
KAMZINA L S, WEI R, ZENG J T,
et al. Effect of the La concentration on the dielectric and optical properties of the transparent ferroelectric ceramics 75PbMg
1/3Nb
2/3O
3-25PbTiO
3[J].
Physics of the Solid State, 2011, 53(8): 1608-1613.
doi:10.1134/S1063783411080142
|
[28] |
KAMZINA L S, RUAN W, LI G R,
et al. Transparent ferroelectric ceramics PbMg
1/3Nb
2/3O
3-
xPbZr
0.53Ti
0.47O
3: Dielectric and electro-optical properties[J].
Physics of the Solid State, 2012, 54(10): 2024-2029.
doi:10.1134/S1063783412100174
|
[29] |
LIU A Y, HAN H L, WEI L L,
et al. Microstructure and electrical properties of PMNT thin films prepared by a modified sol-gel process[J].
Proceedings of SPIE, 2013, 9068: 90680R.
|
[30] |
李国柱. PMN-PT单晶及薄膜的光电转换性能研究[D]. 上海: 上海师范大学, 2015.
LI G ZH. Photoelectric conversion properties of PMN-PT single crystals and thin films[D]. Shanghai: Shanghai Normal University, 2015. (in Chinese)
|
[31] |
EL HOSINY ALI H, JIMéNEZ R, RAMOS R,
et al. The role of PbTiO
3layers in piezoelectric multilayer composite films based on Pb(Mg
1/3Nb
2/3)O
3-PbTiO
3[J].
Thin Solid Films, 2017, 636: 730-736.
doi:10.1016/j.tsf.2017.07.011
|
[32] |
张德强. 溶胶凝胶法制备PMNT薄膜及性能研究[D]. 西安: 西安工业大学, 2018.
ZHANG D Q. Synthesis and properties of PMNT thin films prepared by sol-gel method[D]. Xi’an: Xi’an Technological University, 2018. (in Chinese)
|
[33] |
孙荣明, 郑芝凤, 祝炳和. 用氧化物原料制备大尺寸PLZT透明陶瓷[J]. 硅酸盐,1981(3):16-20.
SUN R M, ZHENG ZH F, ZHU B H. Preparation of large-size PLZT transparent ceramics from oxide raw materials[J].
Chinese Journal of Ceramics, 1981(3): 16-20. (in Chinese)
|
[34] |
何夕云, 张勇, 郑鑫森, 等. 镝掺杂锆钛酸铅镧透明陶瓷的结构和电光性能[J]. 光学学报,2009,29(6):1601-1604.
doi:10.3788/AOS20092906.1601
HE X Y, ZHANG Y, ZHENG X S,
et al. Structure and electro-optical property of the Dy
3+doped lanthanum zirconate-titanate ceramics[J].
Acta Optica Sinica, 2009, 29(6): 1601-1604. (in Chinese)
doi:10.3788/AOS20092906.1601
|
[35] |
KNIAZKOV A V. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light[J].
Technical Physics, 2016, 61(4): 631-634.
doi:10.1134/S1063784216040125
|
[36] |
中国科学院上海硅酸盐研究所. 锆钛酸镧铅(PLZT)光电陶瓷材料[EB/OL]. (2018-07-12)[2020-02-27].
http://www.sic.ac.cn/glbm/kjfzb/sdhzc/xmzs/201202/t20120220_3442451.html.
|
[37] |
LIMPICHAIPANIT A, NGAMJARUROJANA A. Effect of Li and Bi co-doping and sintering temperature on dielectric properties of PLZT 9/65/35 ceramics[J].
Ceramics International, 2017, 43(5): 4450-4455.
doi:10.1016/j.ceramint.2016.12.094
|
[38] |
SOMWAN S, NGAMJARUROJANA A, LIMPICHAIPANIT A. Dielectric, ferroelectric and induced strain behavior of PLZT 9/65/35 ceramics modified by Bi
2O
3and CuO co-doping[J].
Ceramics International, 2016, 42(9): 10690-10696.
doi:10.1016/j.ceramint.2016.03.181
|
[39] |
FUNSUEB N, NGAMJARUROJANA A, TUNKASIRI T,
et al. Effect of composition and grain size on dielectric, ferroelectric and induced strain behavior of PLZT/ZrO
2composites[J].
Ceramics International, 2018, 44(6): 6343-6353.
doi:10.1016/j.ceramint.2018.01.025
|
[40] |
SELVAMANI R, SINGH G. TIWARI V S,
et al. Dielectric and piezoelectric properties of Cr
2O
3-doped PLZT (7/65/35) hot pressed ceramics[J].
Materials Today Communications, 2018, 15: 100-104.
doi:10.1016/j.mtcomm.2018.03.002
|
[41] |
HUANG C, XU J M, FANG ZH,
et al. Effect of preparation process on properties of PLZT (9/65/35) transparent ceramics[J].
Journal of Alloys and Compounds, 2017, 723: 602-610.
doi:10.1016/j.jallcom.2017.06.271
|
[42] |
许文才. 锆钛酸铅压电薄膜的制备和表征[D]. 大连: 大连理工大学, 2017.
XU W C. Fabrication and characterization of lead zirconate titanate piezoelectric thin films[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
|
[43] |
郭有文. PLZT陶瓷的制备及其掺杂改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
GUO Y W. Preparation and doping modification research of PLZT ceramics[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
|
[44] |
刘宇锋. PLZT压电陶瓷的弛豫特性和压电特性研究[D]. 广州: 华南理工大学, 2018.
LIU Y F. Studies of relaxation and piezoelectric properties of PLZT ceramics[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
|
[45] |
ZHU B, CAO ZH D, HE X Y,
et al.. The effect of Al doping on ferroelectric and dielectric properties of PLZT transparent electro-optical ceramics[C].
Proceedings of 2018 Chinese Materials Conference on Physics and Techniques of Ceramic and Polymeric Materials,
Springer, 2018: 205-211.
|
[46] |
NAKAMURA K, MIYAZU J, SASAURA M,
et al. Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa
1−xNb
xO
3[J].
Applied Physics Letters, 2006, 89(13): 131115.
doi:10.1063/1.2357335
|
[47] |
IMAI T, SASAURA M, NAKAMURA K,
et al. Crystal growth and electro-optic properties of KTa
1-xNb
xO
3[J].
NTT Technical Review, 2007, 5(9): 1-8.
|
[48] |
王旭平. KTN系列晶体的生长及其性能研究[D]. 济南: 山东大学, 2008.
WANG X P. Growth and properties investigation of KTN series crystals[D]. Ji’nan: Shandong University, 2008. (in Chinese)
|
[49] |
DI GERONIMO E, BORNAND V, PAPET P. Elaboration and characterization of potassium niobate tantalate ceramics[J].
Ceramics International, 2017, 43(1): 953-960.
doi:10.1016/j.ceramint.2016.10.025
|
[50] |
山东省科学院新材料研究所. 钽铌酸钾(KTa
1-XNb
XO
3, KTN)晶体[EB/OL].[2020-02-27].
http://crystcn.51sole.com/companyproductdetail_7677292.htm.
|
[51] |
DELRE E, SPINOZZI E, AGRANAT A J,
et al. Scale-free optics and diffractionless waves in nanodisordered ferroelectrics[J].
Nature Photonics, 2011, 5(1): 39-42.
doi:10.1038/nphoton.2010.285
|
[52] |
DELRE E, PARRAVICINI J, PARRAVICINI G,
et al.. Wavelength-insensitive negative optical permittivity without nanofabrication in transparent nonlinear dipolar glasses[C].
Proceedings of 2012 Conference on Lasers and Electro-Optics(
CLEO),
IEEE, 2012: 1-2.
|
[53] |
PARRAVICINI J, AGRANAT A J, CONTI C,
et al. Equalizing disordered ferroelectrics for diffraction cancellation[J].
Applied Physics Letters, 2012, 101(11): 111104.
doi:10.1063/1.4751847
|
[54] |
PARRAVICINI J, CONTI C, AGRANAT A J,
et al. Programming scale-free optics in disordered ferroelectrics[J].
Optics Letters, 2012, 37(12): 2355-2357.
doi:10.1364/OL.37.002355
|
[55] |
PIERANGELI D, PARRAVICINI J, DI MEI F,
et al. Photorefractive light needles in glassy nanodisordered KNTN[J].
Optics Letters, 2014, 39(6): 1657-1660.
doi:10.1364/OL.39.001657
|
[56] |
DI MEI F, FALSI L, FLAMMINI M,
et al. Giant broadband refraction in the visible in a ferroelectric perovskite[J].
Nature Photonics, 2018, 12(12): 734-738.
doi:10.1038/s41566-018-0276-3
|
[57] |
TIAN H, YAO B, WANG L,
et al. Dynamic response of polar nanoregions under an electric field in a paraelectric KTa
0.61Nb
0.39O
3single crystal near the para-ferroelectric phase boundary[J].
Scientific Reports, 2015, 5(1): 13751.
doi:10.1038/srep13751
|
[58] |
王磊. 相界附近钽铌酸钾晶体的电光响应特性及其机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
WANG L. The study of electro-optic response and mechanism in potassium tantalat niobate near the phase boundary[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
|
[59] |
TAN P, TIAN H, HU CH P,
et al. Temperature field driven polar nanoregions in KTa
1−xNb
xO
3[J].
Applied Physics Letters, 2016, 109(25): 252904.
doi:10.1063/1.4972783
|
[60] |
姚博. 钽铌酸钾晶体居里温度附近临界特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
YAO B. Critical properties of potassium tantalate niobate crystal near the curie temperature[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
|
[61] |
毛晨阳. 相变温度附近钽铌酸钾晶体的电光响应研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
MAO CH Y. The study of electro-optical response of potassium tantalate niobate crystal near phase transition temperature[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
|
[62] |
TAN P, TIAN H, MAO CH Y,
et al. Field-driven electro-optic dynamics of polar nanoregions in nanodisordered KTa
1−xNb
xO
3crystal[J].
Applied Physics Letters, 2017, 111(1): 012903.
doi:10.1063/1.4991357
|
[63] |
TAN P, TIAN H, WANG Y,
et al. Impact of dipolar clusters on electro-optic effects in KTa
1−xNb
xO
3crystal[J].
Optics Letters, 2018, 43(20): 5009-5012.
doi:10.1364/OL.43.005009
|
[64] |
ZHANG X J, YE Q, CAI H W,
et al. Polarization-independent electro-optic modulator based on PMNT electrically-controlled birefringence effect and Sagnac interferometer[J].
Optics&
Laser Technology, 2014, 57: 5-8.
|
[65] |
ZHANG X J, YE Q, QU R H,
et al. High-power electro-optic switch technology based on novel transparent ceramic[J].
Chinese Physics B, 2016, 25(3): 034202.
doi:10.1088/1674-1056/25/3/034202
|
[66] |
宋益澄, 何晓明, 郭乃健. PLZT电光调制器[J]. 光电子· ,1984(4):37-40.
SONG Y CH, HE X M, GUO N J. PLZT electro-optic modulator[J].
Journal of Optoelectronics·Laser, 1984(4): 37-40. (in Chinese)
|
[67] |
CHEN F S, GEUSIC J E, KURTZ S K,
et al. Light modulation and beam deflection with potassium tantalate-niobate crystals[J].
Journal of Applied Physics, 1966, 37(1): 388-398.
doi:10.1063/1.1707846
|
[68] |
ITOH T, SASAURA M, TOYODA S,
et al.. High-frequency response of electro-optic single crystal KTa
xNb
1-xO
3in paraelectric phase[C].
Proceedings of 2005 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies,
Optical Society of America, 2005: JTuC36.
|
[69] |
CHANG Y C, YIN SH ZH, HOFFMAN R C,
et al. Broadband large field of view electro-optic modulators using potassium tantalate niobate (KTN) crystals[J].
Proceedings of SPIE, 2013, 8847: 88470L.
doi:10.1117/12.2025529
|
[70] |
GUMENNIK A, KURZWEIL-SEGEV Y, AGRANAT A J. Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment[J].
Optical Materials Express, 2011, 1(3): 332-343.
doi:10.1364/OME.1.000332
|
[71] |
KABESSA Y, YATIV A, ILAN H E,
et al. Electro-optical modulation with immunity to optical damage by bipolar operation in potassium lithium tantalate niobate[J].
Optics Express, 2015, 23(4): 4348-4356.
doi:10.1364/OE.23.004348
|
[72] |
王骁乾, 沈冬, 郑致刚, 等. 液晶光控取向技术进展[J]. 液晶与显示,2015,30(5):737-751.
doi:10.3788/YJYXS20153005.0737
WANG X Q, SHEN D, ZHEN ZH G,
et al. Review on liquid crystal photoalignment technologies[J].
Chinese Journal of Liquid Crystals and Displays, 2015, 30(5): 737-751. (in Chinese)
doi:10.3788/YJYXS20153005.0737
|