Volume 14Issue 3
May 2021
Turn off MathJax
Article Contents
LÜ Xiao-lei, ZHAO Ji-guang, DU Xiao-ping, SONG Yi-shuo, ZHANG Peng, ZHANG Jian-wei. Research progress on the modulation properties of new electro-optic materials[J]. Chinese Optics, 2021, 14(3): 503-515. doi: 10.37188/CO.2020-0039
Citation: LÜ Xiao-lei, ZHAO Ji-guang, DU Xiao-ping, SONG Yi-shuo, ZHANG Peng, ZHANG Jian-wei. Research progress on the modulation properties of new electro-optic materials[J].Chinese Optics, 2021, 14(3): 503-515.doi:10.37188/CO.2020-0039

Research progress on the modulation properties of new electro-optic materials

doi:10.37188/CO.2020-0039
Funds:Supported by National Natural Science Foundation of China (No. 61805284)
More Information
  • Corresponding author:zhaoyy8600@163.com
  • Received Date:10 Mar 2020
  • Rev Recd Date:14 Apr 2020
  • Available Online:17 Apr 2021
  • Publish Date:14 May 2021
  • Polarization modulation technology based on electro-optic crystals is playing an increasingly important role in the field of three-dimensional laser imaging. Due to the low field of view and high half-wave voltage of LiNiO 3(LN) materials, it is difficult for traditional electro-optic modulation technology to further improve 3D imaging performance. As the preparation technology of perovskite-structured electro-optical materials becomes more mature, electro-optic modulation technology based on new materials will become an excellent means to create a breakthrough in the detection accuracy of laser 3D imaging. PMNT, PLZT and KTa xNb 1-xO 3(KTN) three typical materials have excellent electro-optical properties and dielectric properties that might surpass the field of view and half-wave voltage limitation. However, their applications in electro-optic modulation has lead to difficulties such as a low modulation bandwidth for PMNT, poor transmission performance for PLZT, and low practical application bandwidth for KTN. Future research will focus on the practicality of this modulation technology. The electro-optic modulation performance can be improved by doping and the signal-to-noise ratio of the system can be optimized by establishing performance characterization models.

  • loading
  • [1]
    赵炜渝, 邢宁. 美国航天创新项目发展分析[J]. 中国航天,2015(3):23-27.

    ZHAO W Y, XING N. Analysis of the development of US space innovation projects[J]. Aerospace China, 2015(3): 23-27. (in Chinese)
    [2]
    王雪瑶, 宋博. 美国国防高级研究计划局启动“地球同步轨道卫星自主服务”项目[J]. 国际太空,2016(11):33-38.

    WANG X Y, SONG B. U.S. DARPA started the RSGS program[J]. Space International, 2016(11): 33-38. (in Chinese)
    [3]
    TICKER R L, CEPOLLINA F, REED B B. NASA’s in-space robotic servicing[C]. Proceedings of the AIAA SPACE 2015 Conference and Exposition, AAIA, 2015: 4644.
    [4]
    STRUBE M, HENRY R, SKELETON E, et al.. Raven: an on-orbit relative navigation demonstration using international space station visiting vehicles[C]. American Astronautical Society Guidance and Control Conference, American Astronautical Society, 2015.
    [5]
    GALANTE J M, VAN EEPOEL J, D’SOUZA C, et al.. Fast Kalman filtering for relative spacecraft position and attitude estimation for the raven ISS hosted payload[R]. AAS 16-045, 2016.
    [6]
    FORSHAW J L, AGLIETTI G S, NAVARATHINAM N, et al. Remove DEBRIS: An in-orbit active debris removal demonstration mission[J]. Acta Astronautica, 2016, 127: 448-463. doi:10.1016/j.actaastro.2016.06.018
    [7]
    MCMANAMON P F, BANKS P S, BECK J D, et al. Comparison of flash lidar detector options[J]. Optical Engineering, 2017, 56(3): 031223. doi:10.1117/1.OE.56.3.031223
    [8]
    ECKERSLEY S, SAUNDERS C, LOBB D, et al.. Future rendezvous and docking missions enabled by low-cost but safety compliant Guidance Navigation and Control (GNC) architectures[C]. Proceedings of The 15th Reinventing Space Conference, British Interplanetary Society, 2017.
    [9]
    陈臻. 基于偏振调制的 三维成像方法研究[D]. 北京: 中国科学院大学, 2017.

    CHEN ZH. Research on three-dimensional active imaging with polarization -modulated method[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)
    [10]
    CHEN ZH, LIU B, LIU E H, et al. Electro-optic modulation methods in range-gated active imaging[J]. Applied Optics, 2016, 55(3): A184-A190. doi:10.1364/AO.55.00A184
    [11]
    ZHANG P, DU X P, ZHAO J G, et al. High resolution flash three-dimensional LIDAR systems based on polarization modulation[J]. Applied Optics, 2017, 56(13): 3889-3894. doi:10.1364/AO.56.003889
    [12]
    JO S, KONG H J, BANG H, et al. High resolution three-dimensional flash LIDAR system using a polarization modulating Pockels cell and a micro-polarizer CCD camera[J]. Optics Express, 2016, 24(26): A1580-A1585. doi:10.1364/OE.24.0A1580
    [13]
    何子清, 葛超, 王春阳. 基于最小二乘配置的光学镜头畸变校正方法[J]. 液晶与显示,2019,34(3):302-309. doi:10.3788/YJYXS20193403.0302

    HE Z Q, GE CH, WANG CH Y. Optical lens distortion correction method based on least square configuration[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(3): 302-309. (in Chinese) doi:10.3788/YJYXS20193403.0302
    [14]
    于国栋. 靶场光学镜头畸变校正方法研究[J]. 液晶与显示,2017,32(3):227-233. doi:10.3788/YJYXS20173203.0227

    YU G D. Distortion correction method for optical lens of the range[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(3): 227-233. (in Chinese) doi:10.3788/YJYXS20173203.0227
    [15]
    李新娥, 班皓, 沙巍, 等. 一种大视场TDICCD相机的多传感器图像配准方法[J]. 液晶与显示,2014,29(4):644-648. doi:10.3788/YJYXS20142904.0644

    LI X E, BAN H, SHA W, et al. Registration method of large field view and multi-sensor images of TDICCD cameras[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(4): 644-648. (in Chinese) doi:10.3788/YJYXS20142904.0644
    [16]
    王越, 蒋毅坚. 3 m点群晶体纵向压电性能的研究[J]. 人工晶体学报,2004,33(3):399-402.

    WANG Y, JIANG Y J. Crystal orientation dependence of longitudinal piezoelectric properties for 3 m point group crystals[J]. Journal of Synthetic Crystals, 2004, 33(3): 399-402. (in Chinese)
    [17]
    BU Y M, ZENG Z Y, DU X P, et al. Theoretical research on new photoelectric mixing technology based on electro-optical modulation[J]. Proceedings of SPIE, 2018, 10964: 109640I.
    [18]
    CHANG Y C, WANG CH, YIN SH ZH, et al. Kovacs effect enhanced broadband large field of view electro-optic modulators in nanodisordered KTN crystals[J]. Optics Express, 2013, 21(15): 17760-17768. doi:10.1364/OE.21.017760
    [19]
    王菲菲, 邵喜斌. 负型液晶在ADS广视角技术中的应用[J]. 液晶与显示,2016,31(8):760-767. doi:10.3788/YJYXS20163108.0760

    WANG F F, SHAO X B. Application of negative LC in ADS wide view technology[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(8): 760-767. (in Chinese) doi:10.3788/YJYXS20163108.0760
    [20]
    YADA M, ISHIHARA Y, NAOE T, et al.. Noise reduction method for electro-optic measurement system using variable gain amplifier[C]. Proceedings of 2017 IEEE Region 10 Conference, IEEE, 2017: 1969-1972.
    [21]
    ZHANG J, NELSON J S, CHEN ZH P. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator[J]. Optics Letters, 2015, 30(2): 147-149.
    [22]
    PAN X J, CAI Y, ZENG X K, et al. A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio[J]. Optics Communications, 2017, 391: 135-140. doi:10.1016/j.optcom.2017.01.021
    [23]
    卜禹铭, 杜小平, 曾朝阳, 等. 无扫描 三维成像雷达研究进展及趋势分析[J]. 中国光学,2018,11(5):711-727. doi:10.3788/CO.20181105.0711

    BU Y M, DU X P, ZENG ZH Y, et al. Research progress and trend analysis of non-scanning laser 3D imaging radar[J]. Chinese Optics, 2018, 11(5): 711-727. (in Chinese) doi:10.3788/CO.20181105.0711
    [24]
    SHINAGAWA M, KOBAYASHI J, YAGI S, et al. Sensitive electro-optic sensor using KTa 1−xNb xO 3crystal[J]. Sensors and Actuators A: Physical, 2013, 192: 42-48. doi:10.1016/j.sna.2012.12.003
    [25]
    罗豪甦, 徐海清, 王评初, 等. 新型压电单晶PMNT的生长和性能研究[J]. 哈尔滨理工大学学报,2002,7(6):98-99, 104.

    LUO H S, XU H Q, WANG P CH, et al. Growth and properties of a new typical piezoelectric sircgle crystal PMNT[J]. Journal of Harbin University of Science and Technology, 2002, 7(6): 98-99, 104. (in Chinese)
    [26]
    LIN Y T, REN B, ZHAO X Y, et al. Large quadratic electro-optic properties of ferroelectric base 0.92Pb(Mg 1/3Nb 2/3)O 3-0.08PbTiO 3single crystal[J]. Journal of Alloys and Compounds, 2010, 507(2): 425-428. doi:10.1016/j.jallcom.2010.06.068
    [27]
    KAMZINA L S, WEI R, ZENG J T, et al. Effect of the La concentration on the dielectric and optical properties of the transparent ferroelectric ceramics 75PbMg 1/3Nb 2/3O 3-25PbTiO 3[J]. Physics of the Solid State, 2011, 53(8): 1608-1613. doi:10.1134/S1063783411080142
    [28]
    KAMZINA L S, RUAN W, LI G R, et al. Transparent ferroelectric ceramics PbMg 1/3Nb 2/3O 3- xPbZr 0.53Ti 0.47O 3: Dielectric and electro-optical properties[J]. Physics of the Solid State, 2012, 54(10): 2024-2029. doi:10.1134/S1063783412100174
    [29]
    LIU A Y, HAN H L, WEI L L, et al. Microstructure and electrical properties of PMNT thin films prepared by a modified sol-gel process[J]. Proceedings of SPIE, 2013, 9068: 90680R.
    [30]
    李国柱. PMN-PT单晶及薄膜的光电转换性能研究[D]. 上海: 上海师范大学, 2015.

    LI G ZH. Photoelectric conversion properties of PMN-PT single crystals and thin films[D]. Shanghai: Shanghai Normal University, 2015. (in Chinese)
    [31]
    EL HOSINY ALI H, JIMéNEZ R, RAMOS R, et al. The role of PbTiO 3layers in piezoelectric multilayer composite films based on Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3[J]. Thin Solid Films, 2017, 636: 730-736. doi:10.1016/j.tsf.2017.07.011
    [32]
    张德强. 溶胶凝胶法制备PMNT薄膜及性能研究[D]. 西安: 西安工业大学, 2018.

    ZHANG D Q. Synthesis and properties of PMNT thin films prepared by sol-gel method[D]. Xi’an: Xi’an Technological University, 2018. (in Chinese)
    [33]
    孙荣明, 郑芝凤, 祝炳和. 用氧化物原料制备大尺寸PLZT透明陶瓷[J]. 硅酸盐,1981(3):16-20.

    SUN R M, ZHENG ZH F, ZHU B H. Preparation of large-size PLZT transparent ceramics from oxide raw materials[J]. Chinese Journal of Ceramics, 1981(3): 16-20. (in Chinese)
    [34]
    何夕云, 张勇, 郑鑫森, 等. 镝掺杂锆钛酸铅镧透明陶瓷的结构和电光性能[J]. 光学学报,2009,29(6):1601-1604. doi:10.3788/AOS20092906.1601

    HE X Y, ZHANG Y, ZHENG X S, et al. Structure and electro-optical property of the Dy 3+doped lanthanum zirconate-titanate ceramics[J]. Acta Optica Sinica, 2009, 29(6): 1601-1604. (in Chinese) doi:10.3788/AOS20092906.1601
    [35]
    KNIAZKOV A V. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light[J]. Technical Physics, 2016, 61(4): 631-634. doi:10.1134/S1063784216040125
    [36]
    中国科学院上海硅酸盐研究所. 锆钛酸镧铅(PLZT)光电陶瓷材料[EB/OL]. (2018-07-12)[2020-02-27]. http://www.sic.ac.cn/glbm/kjfzb/sdhzc/xmzs/201202/t20120220_3442451.html.
    [37]
    LIMPICHAIPANIT A, NGAMJARUROJANA A. Effect of Li and Bi co-doping and sintering temperature on dielectric properties of PLZT 9/65/35 ceramics[J]. Ceramics International, 2017, 43(5): 4450-4455. doi:10.1016/j.ceramint.2016.12.094
    [38]
    SOMWAN S, NGAMJARUROJANA A, LIMPICHAIPANIT A. Dielectric, ferroelectric and induced strain behavior of PLZT 9/65/35 ceramics modified by Bi 2O 3and CuO co-doping[J]. Ceramics International, 2016, 42(9): 10690-10696. doi:10.1016/j.ceramint.2016.03.181
    [39]
    FUNSUEB N, NGAMJARUROJANA A, TUNKASIRI T, et al. Effect of composition and grain size on dielectric, ferroelectric and induced strain behavior of PLZT/ZrO 2composites[J]. Ceramics International, 2018, 44(6): 6343-6353. doi:10.1016/j.ceramint.2018.01.025
    [40]
    SELVAMANI R, SINGH G. TIWARI V S, et al. Dielectric and piezoelectric properties of Cr 2O 3-doped PLZT (7/65/35) hot pressed ceramics[J]. Materials Today Communications, 2018, 15: 100-104. doi:10.1016/j.mtcomm.2018.03.002
    [41]
    HUANG C, XU J M, FANG ZH, et al. Effect of preparation process on properties of PLZT (9/65/35) transparent ceramics[J]. Journal of Alloys and Compounds, 2017, 723: 602-610. doi:10.1016/j.jallcom.2017.06.271
    [42]
    许文才. 锆钛酸铅压电薄膜的制备和表征[D]. 大连: 大连理工大学, 2017.

    XU W C. Fabrication and characterization of lead zirconate titanate piezoelectric thin films[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
    [43]
    郭有文. PLZT陶瓷的制备及其掺杂改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    GUO Y W. Preparation and doping modification research of PLZT ceramics[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [44]
    刘宇锋. PLZT压电陶瓷的弛豫特性和压电特性研究[D]. 广州: 华南理工大学, 2018.

    LIU Y F. Studies of relaxation and piezoelectric properties of PLZT ceramics[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
    [45]
    ZHU B, CAO ZH D, HE X Y, et al.. The effect of Al doping on ferroelectric and dielectric properties of PLZT transparent electro-optical ceramics[C]. Proceedings of 2018 Chinese Materials Conference on Physics and Techniques of Ceramic and Polymeric Materials, Springer, 2018: 205-211.
    [46]
    NAKAMURA K, MIYAZU J, SASAURA M, et al. Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa 1−xNb xO 3[J]. Applied Physics Letters, 2006, 89(13): 131115. doi:10.1063/1.2357335
    [47]
    IMAI T, SASAURA M, NAKAMURA K, et al. Crystal growth and electro-optic properties of KTa 1-xNb xO 3[J]. NTT Technical Review, 2007, 5(9): 1-8.
    [48]
    王旭平. KTN系列晶体的生长及其性能研究[D]. 济南: 山东大学, 2008.

    WANG X P. Growth and properties investigation of KTN series crystals[D]. Ji’nan: Shandong University, 2008. (in Chinese)
    [49]
    DI GERONIMO E, BORNAND V, PAPET P. Elaboration and characterization of potassium niobate tantalate ceramics[J]. Ceramics International, 2017, 43(1): 953-960. doi:10.1016/j.ceramint.2016.10.025
    [50]
    山东省科学院新材料研究所. 钽铌酸钾(KTa 1-XNb XO 3, KTN)晶体[EB/OL].[2020-02-27]. http://crystcn.51sole.com/companyproductdetail_7677292.htm.
    [51]
    DELRE E, SPINOZZI E, AGRANAT A J, et al. Scale-free optics and diffractionless waves in nanodisordered ferroelectrics[J]. Nature Photonics, 2011, 5(1): 39-42. doi:10.1038/nphoton.2010.285
    [52]
    DELRE E, PARRAVICINI J, PARRAVICINI G, et al.. Wavelength-insensitive negative optical permittivity without nanofabrication in transparent nonlinear dipolar glasses[C]. Proceedings of 2012 Conference on Lasers and Electro-Optics( CLEO), IEEE, 2012: 1-2.
    [53]
    PARRAVICINI J, AGRANAT A J, CONTI C, et al. Equalizing disordered ferroelectrics for diffraction cancellation[J]. Applied Physics Letters, 2012, 101(11): 111104. doi:10.1063/1.4751847
    [54]
    PARRAVICINI J, CONTI C, AGRANAT A J, et al. Programming scale-free optics in disordered ferroelectrics[J]. Optics Letters, 2012, 37(12): 2355-2357. doi:10.1364/OL.37.002355
    [55]
    PIERANGELI D, PARRAVICINI J, DI MEI F, et al. Photorefractive light needles in glassy nanodisordered KNTN[J]. Optics Letters, 2014, 39(6): 1657-1660. doi:10.1364/OL.39.001657
    [56]
    DI MEI F, FALSI L, FLAMMINI M, et al. Giant broadband refraction in the visible in a ferroelectric perovskite[J]. Nature Photonics, 2018, 12(12): 734-738. doi:10.1038/s41566-018-0276-3
    [57]
    TIAN H, YAO B, WANG L, et al. Dynamic response of polar nanoregions under an electric field in a paraelectric KTa 0.61Nb 0.39O 3single crystal near the para-ferroelectric phase boundary[J]. Scientific Reports, 2015, 5(1): 13751. doi:10.1038/srep13751
    [58]
    王磊. 相界附近钽铌酸钾晶体的电光响应特性及其机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    WANG L. The study of electro-optic response and mechanism in potassium tantalat niobate near the phase boundary[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [59]
    TAN P, TIAN H, HU CH P, et al. Temperature field driven polar nanoregions in KTa 1−xNb xO 3[J]. Applied Physics Letters, 2016, 109(25): 252904. doi:10.1063/1.4972783
    [60]
    姚博. 钽铌酸钾晶体居里温度附近临界特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    YAO B. Critical properties of potassium tantalate niobate crystal near the curie temperature[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [61]
    毛晨阳. 相变温度附近钽铌酸钾晶体的电光响应研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    MAO CH Y. The study of electro-optical response of potassium tantalate niobate crystal near phase transition temperature[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    [62]
    TAN P, TIAN H, MAO CH Y, et al. Field-driven electro-optic dynamics of polar nanoregions in nanodisordered KTa 1−xNb xO 3crystal[J]. Applied Physics Letters, 2017, 111(1): 012903. doi:10.1063/1.4991357
    [63]
    TAN P, TIAN H, WANG Y, et al. Impact of dipolar clusters on electro-optic effects in KTa 1−xNb xO 3crystal[J]. Optics Letters, 2018, 43(20): 5009-5012. doi:10.1364/OL.43.005009
    [64]
    ZHANG X J, YE Q, CAI H W, et al. Polarization-independent electro-optic modulator based on PMNT electrically-controlled birefringence effect and Sagnac interferometer[J]. Optics& Laser Technology, 2014, 57: 5-8.
    [65]
    ZHANG X J, YE Q, QU R H, et al. High-power electro-optic switch technology based on novel transparent ceramic[J]. Chinese Physics B, 2016, 25(3): 034202. doi:10.1088/1674-1056/25/3/034202
    [66]
    宋益澄, 何晓明, 郭乃健. PLZT电光调制器[J]. 光电子· ,1984(4):37-40.

    SONG Y CH, HE X M, GUO N J. PLZT electro-optic modulator[J]. Journal of Optoelectronics·Laser, 1984(4): 37-40. (in Chinese)
    [67]
    CHEN F S, GEUSIC J E, KURTZ S K, et al. Light modulation and beam deflection with potassium tantalate-niobate crystals[J]. Journal of Applied Physics, 1966, 37(1): 388-398. doi:10.1063/1.1707846
    [68]
    ITOH T, SASAURA M, TOYODA S, et al.. High-frequency response of electro-optic single crystal KTa xNb 1-xO 3in paraelectric phase[C]. Proceedings of 2005 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Optical Society of America, 2005: JTuC36.
    [69]
    CHANG Y C, YIN SH ZH, HOFFMAN R C, et al. Broadband large field of view electro-optic modulators using potassium tantalate niobate (KTN) crystals[J]. Proceedings of SPIE, 2013, 8847: 88470L. doi:10.1117/12.2025529
    [70]
    GUMENNIK A, KURZWEIL-SEGEV Y, AGRANAT A J. Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment[J]. Optical Materials Express, 2011, 1(3): 332-343. doi:10.1364/OME.1.000332
    [71]
    KABESSA Y, YATIV A, ILAN H E, et al. Electro-optical modulation with immunity to optical damage by bipolar operation in potassium lithium tantalate niobate[J]. Optics Express, 2015, 23(4): 4348-4356. doi:10.1364/OE.23.004348
    [72]
    王骁乾, 沈冬, 郑致刚, 等. 液晶光控取向技术进展[J]. 液晶与显示,2015,30(5):737-751. doi:10.3788/YJYXS20153005.0737

    WANG X Q, SHEN D, ZHEN ZH G, et al. Review on liquid crystal photoalignment technologies[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(5): 737-751. (in Chinese) doi:10.3788/YJYXS20153005.0737
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)/Tables(5)

    Article views(2532) PDF downloads(219) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map