Volume 13Issue 6
Dec. 2020
Turn off MathJax
Article Contents
WANG Hao-bing, TAO Jin, LV Jin-guang, MENG De-jia, LI Yang, ZHAO Yong-zhou, WANG Jia-xian, ZHANG Jun, QIN Yu-xin, WANG Wei-biao, LIANG Jing-qiu. Absorption enhancement of silicon via localized surface plasmons resonance in blue band[J]. Chinese Optics, 2020, 13(6): 1362-1384. doi: 10.37188/CO.2020-0056
Citation: WANG Hao-bing, TAO Jin, LV Jin-guang, MENG De-jia, LI Yang, ZHAO Yong-zhou, WANG Jia-xian, ZHANG Jun, QIN Yu-xin, WANG Wei-biao, LIANG Jing-qiu. Absorption enhancement of silicon via localized surface plasmons resonance in blue band[J].Chinese Optics, 2020, 13(6): 1362-1384.doi:10.37188/CO.2020-0056

Absorption enhancement of silicon via localized surface plasmons resonance in blue band

doi:10.37188/CO.2020-0056
Funds:Supported by the National Key Research and Development Program of China (Grant No. 2018YFB1801900), Science and Technology Plan of Guangdong Province, China (Grant No. 2016B010111003) and Development of Science and Technology Plan of Jilin Province, China (Grant No. 20180801024GX and No. 20190302062GX), the Youth Innovation Promotion Association Foundation (NO. 2018254), the State Key Laboratory of Applied Optics 2019 Open Foundation (SKLAO: 201908)
More Information
  • Author Bio:

    Wang Haobing (1994—), male, born in Songyuan City, Jilin province, Master Degree Candidate. In 2017, he graduated from Changchun University of Science and Technology with a Bachelor of Science degree. He is now a graduate student of Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. He is mainly engaged in the research of nanophotonics and semiconductor photodetectors. E-mail:996490955@qq.com

    Wang Weibiao (1962—), male, born in Yangzhou City, Jiangsu province. He is a doctor, researcher and doctoral supervisor. He received his doctor’s degree from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 1999. Now he is a researcher of this institute. He is mainly engaged in the research of photonic crystal and micro-nano photonics, LED array chip integration and application, field emission materials and electron emission characteristics. E-mail:wangwb@ciomp.ac.cn

    Liang Jingqiu (1962—), female, born in Changchun City, Jilin Province. She is a doctor, researcher and doctoral supervisor. In 2003, she received her doctor's degree from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. Now she is a researcher of this institute. She is mainly engaged in the research of micro/nano optical structures, devices and systems, infrared spectrum/imaging spectrum and infrared optical instruments, micro LED microdisplay chip and its application, and visible light communication devices and systems. E-mail:liangjq@ciomp.ac.cn

  • Corresponding author:wangwb@ciomp.ac.cn;liangjq@ciomp.ac.cn
  • Received Date:02 Apr 2020
  • Rev Recd Date:27 Apr 2020
  • Available Online:22 Oct 2020
  • Publish Date:01 Dec 2020
  • To enhance the blue light absorption of silicon, an array of silver nanoparticles(Ag-NPs) was designed so that they create Localized Surface Plasmon Resonance(LSPR) near the surface of silicon(Si). The properties of the enhanced optical absorption of silicon in the blue band were then observed and researched. The blue-light absorption characteristic of silicon in the Ag-NPs/Silicon composite structure were calculated using the Finite-Difference-Time-Domain (FDTD) method. The results indicated that the metallic nanoparticles' extinction capability was related to its geometric parameters and the resonance intensity and peak wavelength can be tuned according to different geometric parameters of Ag-NPs including radius, height and period. At a resonance peak wavelength of 465 nm, the optical absorption of Si in the composite structure (Ag-NPs/Si) rises from 59% to 94% with an array of radius r= 18.5 nm, a height H= 45.0 nm and a period P= 49.0 nm. It concluded that the light absorption gain was 0.57 and photogenerated carriers had a gain factor of 0.53 due to the enhanced light absorption of Si via LSPR in blue band. The results provide a significant reference for the enhancement of the blue-light absorption properties in silicon based on the LSPR effect and the design of a silicon-photodetector with a visible wide spectral resoponse.

  • loading
  • [1]
    QIN P, REN Y, LIU L W, et al. Development of plasmon-resonance of metal nanoparticles enhanced harmonic generation in nonlinear medium[J]. Chinese Optics, 2016, 9(2): 213-225. (in Chinese) doi:10.3788/co.20160902.0213
    [2]
    LEI J G, LIU T H, LIN J Q, et al. New applications of surface plasmon polaritons[J]. Chinese Optics, 2010, 3(5): 432-439. (in Chinese) doi:10.3969/j.issn.2095-1531.2010.05.003
    [3]
    MA G H, ZHANG J B, ZHANG H, et al.. Resonant mode of Fabry-Perot microcavity regulated by metal surface plasmons[J]. Chinese Optics, 2019, 12(3): 649-662.
    [4]
    XIANG CH P, YUAN ZH SH, LIU J, et al. Surface plasmon polaritons and F-P resonance coupled modes balance the generation rate of charge carriers of Perovskite solar cells[J]. Chinese Journal of Luminescence, 2018, 39(12): 1749-1756. (in Chinese) doi:10.3788/fgxb20183912.1749
    [5]
    XU H, YAN L, LI L, et al. Influence of localized surface Plasmons on the photoluminescence efficiency of InGaN/GaN multiple quantum wells[J]. Chinese Journal of Luminescence, 2017, 38(3): 324-330. (in Chinese) doi:10.3788/fgxb20173803.0324
    [6]
    QIAO Q, SHAN CH X, LIU J Y, et al. Localized surface plasmon resonance enhanced electroluminescence from ZnO-based light-emitting diodes viaoptimizing the density of sliver nanoparticles[J]. Chinese Journal of Luminescence, 2015, 36(12): 1363-1369. (in Chinese) doi:10.3788/fgxb20153612.1363
    [7]
    BUTUN S, CINEL N A, OZBAY R. Nanoantenna coupled UV subwavelength photodetectors based on GaN[J]. Optics Express, 2012, 20(3): 2649-2656. doi:10.1364/OE.20.002649
    [8]
    QIAO J, XIE SH, MAO L H, et al. Optimum design of silicon-based metal-semiconductor-metal photodetector with subwavelength metal grating[J]. Chinese Journal of Luminescence, 2018, 39(3): 363-368. (in Chinese) doi:10.3788/fgxb20183903.0363
    [9]
    SHAO W J. Design and numerical simulation of optical filter and metamaterial perfect absorber based on surface plasmon polaritons[D]. Hefei: University of Science and Technology of China, 2014. (in Chinese).
    [10]
    WOKAUN A, GORDON J P, LIAO P F. Radiation damping in surface-enhanced raman scattering[J]. Physical Review Letters, 1982, 48(14): 957-960. doi:10.1103/PhysRevLett.48.957
    [11]
    CLAVERO C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photonics, 2014, 8(2): 95-103. doi:10.1038/nphoton.2013.238
    [12]
    KNIGHT M W, SOBHANI H, NORDLANDER P, et al. Photodetection with active optical antennas[J]. Science, 2011, 332(6030): 702-704. doi:10.1126/science.1203056
    [13]
    LI D B, SUN X J, SONG H, et al. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement[J]. Advanced Materials, 2012, 24(6): 845-849. doi:10.1002/adma.201102585
    [14]
    SOBHANI A, KNIGHT M W, WANG Y M, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device[J]. Nature Communications, 2013, 4(1): 1643. doi:10.1038/ncomms2642
    [15]
    BAO G H, LI D B, SUN X J, et al. Enhanced spectral response of an AlGaN-based solar-blind ultraviolet photodetector with Al nanoparticles[J]. Optics Express, 2014, 22(20): 24286-24293. doi:10.1364/OE.22.024286
    [16]
    QU D, LIU F, YU J F, et al. Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices[J]. Applied Physics Letters, 2011, 98(11): 113119. doi:10.1063/1.3559225
    [17]
    LIU Y, CAI X P, LIN L, et al. Research on the fusion technology of LED visible optical communication network with ethernet[J]. Optical Communication Technology, 2019, 43(1): 1-4. (in Chinese)
    [18]
    CHI N, WANG CH F, LI W P, et al. Research progress of underwater visible light communication technology based on blue/green LED[J]. Journal of Fudan University( Natural Science) , 2019, 58(5): 537-548. (in Chinese)
    [19]
    ZHAO T F, MA ZH, LI X SH, et al. Research on line-of-sight channel model of short-range LED optical communication[J]. Acta Photonica Sinica, 2020, 49(1): 106001. (in Chinese) doi:10.3788/gzxb20204901.0106001
    [20]
    TAFLOVE A, HAGNESS S C. Computational Electrodynamics: The Finite-Difference Time-Domain Method[M]. 2nd ed. Boston: Artech House, 2000.
    [21]
    ZHU X P, ZHANG SH, SHI H M, et al. Research progress of coupling theory of metal surface plasmon[J]. Acta Physica Sinica, 2019, 68(24): 247301. (in Chinese) doi:10.7498/aps.68.20191369
    [22]
    CONG CH. Localized surface plasmon resonance properties of noble metal nanoparticles[D]. Nanjing: Nanjing University, 2011. (in Chinese).
    [23]
    BAI Y C, GAO C B, YIN Y D. Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability[J]. Nanoscale, 2017, 9(39): 14875-14880. doi:10.1039/C7NR06002E
    [24]
    WEST P R, ISHII S, NAIK G V, et al. Searching for better plasmonic materials[J]. Laser& Photonics Reviews, 2010, 4(6): 795-808.
    [25]
    SCHINKE C, PEEST P C, SCHMIDT J, et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon[J]. AIP Advances, 2015, 5(6): 067168. doi:10.1063/1.4923379
    [26]
    PALIK E D. Handbook of Optical Constants of Solids[M]. New York: Academic Press, 1998.
    [27]
    WANG SH J, SU D, ZHANG T. Research progress of surface plasmons mediated photothermal effects[J]. Acta Physica Sinica, 2019, 68(14): 144401. (in Chinese) doi:10.7498/aps.68.20190476
    [28]
    MIE G J A P. Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions[J]. Annals of Physics, 1908, 25(3): 377-445.
    [29]
    KELLY K L, CORONADO E, ZHAO L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003, 107(3): 668-677. doi:10.1021/jp026731y
    [30]
    PIETROBON B, MCEACHRAN M, KITAEV V. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods[J]. ACS Nano, 2009, 3(1): 21-26. doi:10.1021/nn800591y
    [31]
    LINK S, EL-SAYED M A. spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods[J]. The Journal of Physical Chemistry B, 1999, 103(40): 8410-8426. doi:10.1021/jp9917648
    [32]
    KHLEBTSOV B, KHANADEEV V, KHLEBTSOV N. Tunable depolarized light scattering from gold and gold/silver nanorods[J]. Physical Chemistry Chemical Physics, 2010, 12(13): 3210-3218. doi:10.1039/b925102b
    [33]
    MAILLARD M, GIORGIO S, PILENI M P. Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties[J]. The Journal of Physical Chemistry B, 2003, 107(11): 2466-2470. doi:10.1021/jp022357q
    [34]
    GARCIA M A. Surface plasmons in metallic nanoparticles: fundamentals and applications[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 283001. doi:10.1088/0022-3727/44/28/283001
    [35]
    LAI SH M, HUANG ZH W, WANG Y J, et al. Simulation and analysis of local surface plasmon resonance of Ag nanostructures[J]. Laser& Optoelectronics Progress, 2018, 55(12): 122601. (in Chinese)
    [36]
    LINK S, El-SAYED M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles[J]. The Journal of Physical Chemistry B, 1999, 103(21): 4212-4217. doi:10.1021/jp984796o
    [37]
    LINK S, MOHAMED M B, EL-SAYED M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant[J]. The Journal of Physical Chemistry B, 1999, 103(16): 3073-3077. doi:10.1021/jp990183f
    [38]
    MARKEL V A. Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure[J]. Journal of Modern Optics, 1993, 40(11): 2281-2291. doi:10.1080/09500349314552291
    [39]
    ZOU SH L, JANEL N, SCHATZ G C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes[J]. The Journal of Chemical Physics, 2004, 120(23): 10871-10875. doi:10.1063/1.1760740
    [40]
    ROCKSTUHL C, FAHR S, LEDERER F. Absorption enhancement in solar cells by localized plasmon polaritons[J]. Journal of Applied Physics, 2008, 104(12): 123102. doi:10.1063/1.3037239
    [41]
    GÄRTNER W W. Depletion-layer Photoeffects in semiconductors[J]. Physical Review, 1959, 116(1): 84-87. doi:10.1103/PhysRev.116.84
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(2008) PDF downloads(122) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map