Citation: | WANG Hao-bing, TAO Jin, LV Jin-guang, MENG De-jia, LI Yang, ZHAO Yong-zhou, WANG Jia-xian, ZHANG Jun, QIN Yu-xin, WANG Wei-biao, LIANG Jing-qiu. Absorption enhancement of silicon via localized surface plasmons resonance in blue band[J].Chinese Optics, 2020, 13(6): 1362-1384.doi:10.37188/CO.2020-0056 |
[1] |
QIN P, REN Y, LIU L W,
et al. Development of plasmon-resonance of metal nanoparticles enhanced harmonic generation in nonlinear medium[J].
Chinese Optics, 2016, 9(2): 213-225. (in Chinese)
doi:10.3788/co.20160902.0213
|
[2] |
LEI J G, LIU T H, LIN J Q,
et al. New applications of surface plasmon polaritons[J].
Chinese Optics, 2010, 3(5): 432-439. (in Chinese)
doi:10.3969/j.issn.2095-1531.2010.05.003
|
[3] |
MA G H, ZHANG J B, ZHANG H,
et al.. Resonant mode of Fabry-Perot microcavity regulated by metal surface plasmons[J].
Chinese Optics, 2019, 12(3): 649-662.
|
[4] |
XIANG CH P, YUAN ZH SH, LIU J,
et al. Surface plasmon polaritons and F-P resonance coupled modes balance the generation rate of charge carriers of Perovskite solar cells[J].
Chinese Journal of Luminescence, 2018, 39(12): 1749-1756. (in Chinese)
doi:10.3788/fgxb20183912.1749
|
[5] |
XU H, YAN L, LI L,
et al. Influence of localized surface Plasmons on the photoluminescence efficiency of InGaN/GaN multiple quantum wells[J].
Chinese Journal of Luminescence, 2017, 38(3): 324-330. (in Chinese)
doi:10.3788/fgxb20173803.0324
|
[6] |
QIAO Q, SHAN CH X, LIU J Y,
et al. Localized surface plasmon resonance enhanced electroluminescence from ZnO-based light-emitting diodes
viaoptimizing the density of sliver nanoparticles[J].
Chinese Journal of Luminescence, 2015, 36(12): 1363-1369. (in Chinese)
doi:10.3788/fgxb20153612.1363
|
[7] |
BUTUN S, CINEL N A, OZBAY R. Nanoantenna coupled UV subwavelength photodetectors based on GaN[J].
Optics Express, 2012, 20(3): 2649-2656.
doi:10.1364/OE.20.002649
|
[8] |
QIAO J, XIE SH, MAO L H,
et al. Optimum design of silicon-based metal-semiconductor-metal photodetector with subwavelength metal grating[J].
Chinese Journal of Luminescence, 2018, 39(3): 363-368. (in Chinese)
doi:10.3788/fgxb20183903.0363
|
[9] |
SHAO W J. Design and numerical simulation of optical filter and metamaterial perfect absorber based on surface plasmon polaritons[D]. Hefei: University of Science and Technology of China, 2014. (in Chinese).
|
[10] |
WOKAUN A, GORDON J P, LIAO P F. Radiation damping in surface-enhanced raman scattering[J].
Physical Review Letters, 1982, 48(14): 957-960.
doi:10.1103/PhysRevLett.48.957
|
[11] |
CLAVERO C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J].
Nature Photonics, 2014, 8(2): 95-103.
doi:10.1038/nphoton.2013.238
|
[12] |
KNIGHT M W, SOBHANI H, NORDLANDER P,
et al. Photodetection with active optical antennas[J].
Science, 2011, 332(6030): 702-704.
doi:10.1126/science.1203056
|
[13] |
LI D B, SUN X J, SONG H,
et al. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement[J].
Advanced Materials, 2012, 24(6): 845-849.
doi:10.1002/adma.201102585
|
[14] |
SOBHANI A, KNIGHT M W, WANG Y M,
et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device[J].
Nature Communications, 2013, 4(1): 1643.
doi:10.1038/ncomms2642
|
[15] |
BAO G H, LI D B, SUN X J,
et al. Enhanced spectral response of an AlGaN-based solar-blind ultraviolet photodetector with Al nanoparticles[J].
Optics Express, 2014, 22(20): 24286-24293.
doi:10.1364/OE.22.024286
|
[16] |
QU D, LIU F, YU J F,
et al. Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices[J].
Applied Physics Letters, 2011, 98(11): 113119.
doi:10.1063/1.3559225
|
[17] |
LIU Y, CAI X P, LIN L,
et al. Research on the fusion technology of LED visible optical communication network with ethernet[J].
Optical Communication Technology, 2019, 43(1): 1-4. (in Chinese)
|
[18] |
CHI N, WANG CH F, LI W P,
et al. Research progress of underwater visible light communication technology based on blue/green LED[J].
Journal of Fudan University(
Natural Science)
|
[19] |
ZHAO T F, MA ZH, LI X SH,
et al. Research on line-of-sight channel model of short-range LED optical communication[J].
Acta Photonica Sinica, 2020, 49(1): 106001. (in Chinese)
doi:10.3788/gzxb20204901.0106001
|
[20] |
TAFLOVE A, HAGNESS S C.
Computational Electrodynamics:
The Finite-Difference Time-Domain Method[M]. 2nd ed. Boston: Artech House, 2000.
|
[21] |
ZHU X P, ZHANG SH, SHI H M,
et al. Research progress of coupling theory of metal surface plasmon[J].
Acta Physica Sinica, 2019, 68(24): 247301. (in Chinese)
doi:10.7498/aps.68.20191369
|
[22] |
CONG CH. Localized surface plasmon resonance properties of noble metal nanoparticles[D]. Nanjing: Nanjing University, 2011. (in Chinese).
|
[23] |
BAI Y C, GAO C B, YIN Y D. Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability[J].
Nanoscale, 2017, 9(39): 14875-14880.
doi:10.1039/C7NR06002E
|
[24] |
WEST P R, ISHII S, NAIK G V,
et al. Searching for better plasmonic materials[J].
Laser&
Photonics Reviews, 2010, 4(6): 795-808.
|
[25] |
SCHINKE C, PEEST P C, SCHMIDT J,
et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon[J].
AIP Advances, 2015, 5(6): 067168.
doi:10.1063/1.4923379
|
[26] |
PALIK E D.
Handbook of Optical Constants of Solids[M]. New York: Academic Press, 1998.
|
[27] |
WANG SH J, SU D, ZHANG T. Research progress of surface plasmons mediated photothermal effects[J].
Acta Physica Sinica, 2019, 68(14): 144401. (in Chinese)
doi:10.7498/aps.68.20190476
|
[28] |
MIE G J A P. Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions[J].
Annals of Physics, 1908, 25(3): 377-445.
|
[29] |
KELLY K L, CORONADO E, ZHAO L L,
et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J].
The Journal of Physical Chemistry B, 2003, 107(3): 668-677.
doi:10.1021/jp026731y
|
[30] |
PIETROBON B, MCEACHRAN M, KITAEV V. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods[J].
ACS Nano, 2009, 3(1): 21-26.
doi:10.1021/nn800591y
|
[31] |
LINK S, EL-SAYED M A. spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods[J].
The Journal of Physical Chemistry B, 1999, 103(40): 8410-8426.
doi:10.1021/jp9917648
|
[32] |
KHLEBTSOV B, KHANADEEV V, KHLEBTSOV N. Tunable depolarized light scattering from gold and gold/silver nanorods[J].
Physical Chemistry Chemical Physics, 2010, 12(13): 3210-3218.
doi:10.1039/b925102b
|
[33] |
MAILLARD M, GIORGIO S, PILENI M P. Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties[J].
The Journal of Physical Chemistry B, 2003, 107(11): 2466-2470.
doi:10.1021/jp022357q
|
[34] |
GARCIA M A. Surface plasmons in metallic nanoparticles: fundamentals and applications[J].
Journal of Physics D:
Applied Physics, 2011, 44(28): 283001.
doi:10.1088/0022-3727/44/28/283001
|
[35] |
LAI SH M, HUANG ZH W, WANG Y J,
et al. Simulation and analysis of local surface plasmon resonance of Ag nanostructures[J].
Laser&
Optoelectronics Progress, 2018, 55(12): 122601. (in Chinese)
|
[36] |
LINK S, El-SAYED M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles[J].
The Journal of Physical Chemistry B, 1999, 103(21): 4212-4217.
doi:10.1021/jp984796o
|
[37] |
LINK S, MOHAMED M B, EL-SAYED M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant[J].
The Journal of Physical Chemistry B, 1999, 103(16): 3073-3077.
doi:10.1021/jp990183f
|
[38] |
MARKEL V A. Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure[J].
Journal of Modern Optics, 1993, 40(11): 2281-2291.
doi:10.1080/09500349314552291
|
[39] |
ZOU SH L, JANEL N, SCHATZ G C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes[J].
The Journal of Chemical Physics, 2004, 120(23): 10871-10875.
doi:10.1063/1.1760740
|
[40] |
ROCKSTUHL C, FAHR S, LEDERER F. Absorption enhancement in solar cells by localized plasmon polaritons[J].
Journal of Applied Physics, 2008, 104(12): 123102.
doi:10.1063/1.3037239
|
[41] |
GÄRTNER W W. Depletion-layer Photoeffects in semiconductors[J].
Physical Review, 1959, 116(1): 84-87.
doi:10.1103/PhysRev.116.84
|