Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
JIANG Yi-yang, CHEN Yan, WANG Xu-dong, ZHAO Dong-yang, LIN Tie, SHEN Hong, MENG Xiang-jian, WANG Lin, WANG Jian-lu. Fabrication and optoelectronic characterization of suspended In2O3 nanowire transistors[J]. Chinese Optics, 2021, 14(1): 196-205. doi: 10.37188/CO.2020-0062
Citation: JIANG Yi-yang, CHEN Yan, WANG Xu-dong, ZHAO Dong-yang, LIN Tie, SHEN Hong, MENG Xiang-jian, WANG Lin, WANG Jian-lu. Fabrication and optoelectronic characterization of suspended In2O3 nanowire transistors[J]. Chinese Optics, 2021, 14(1): 196-205. doi: 10.37188/CO.2020-0062

Fabrication and optoelectronic characterization of suspended In2O3 nanowire transistors

doi: 10.37188/CO.2020-0062
Funds:  Supported by National Natural Science Foundation of China (No. 61521001, No. 61574151); Program on Key Basic Research Project (No. 2016YFA0203900, No. 2016YFB0400801); Program of the Chinese Academy of Science (No. QYZDB-SSW-JCS016, No. QYZDY-SSW-JSC042)
More Information
  • Author Bio:

    JIANG Yi-yang (1995—), Master, School of Materials Science & Engineering, Shanghai University. His place of birth is Yangzhou, Jiangsu. His research interests are on nanowire-based photodetectors. E-mail: Jiangyiyang95@163.com

    CHEN Yan (1991—), Dr, Shanghai Institute of Technical Physics, Microelectronics and Solid-state Electronics, Chinese Academy of Sciences. Place of birth is Nantong, Jiangsu. Her research interests are on optoelectronics based on low-dimensional materials and their heterostructures. E-mail: cherry16@mail.sitp.ac.cn

    WANG Jian-lu (1981—), Dr, Professor, Shanghai Institute of Technical Physics, Microelectronics and Solid-state Electronics, Chinese Academy of Sciences. His place of birth is Pingyao, Shanxi. His research interests currently focus on ferroelectrics, 2D materials and their related electronic and optoelectronic devices. E-mail: jlwang@sitp.ac.cn

  • Corresponding author: cherry16@mail.sitp.ac.cnjlwang@sitp.ac.cn
  • Received Date: 14 Apr 2020
  • Rev Recd Date: 03 May 2020
  • Available Online: 29 Dec 2020
  • Publish Date: 25 Jan 2021
  • One-dimensional (1D) semiconductor nanowires have shown outstanding performance in nano-electronics and nano-photonics. However, the electrical properties of the nanowire transistors are very sensitive to interactions between the nanowires and substrates. Optimizing the device structure can improve the electrical and photodetection performance of nanowire transistors. We report a suspended In2O3 nanowire transistor fabricated by one-step lithography, showing a high mobility of 54.6 cm2V−1s−1 and a low subthreshold swing of 241.5 mVdec−1. As an ultraviolet photodetector, the phototransistor shows an extremely low dark current (~10−13 A) and a high responsivity of 1.6×105 A•W−1. This simple and effective method of suspending the channel material of a transistor can be widely used in manufacturing high-performance micro-nano devices.

     

  • loading
  • [1]
    HEO Y W, VARADARAJAN V, KAUFMAN M, et al. Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy[J]. Applied Physics Letters, 2002, 81(16): 3046-3048. doi: 10.1063/1.1512829
    [2]
    JIANG W, WANG X D, CHEN Y, et al. Large-area high quality PtSe2 thin film with versatile polarity[J]. InfoMat, 2019, 1(2): 260-267.
    [3]
    YAN R X, GARGAS D, YANG P D. Nanowire photonics[J]. Nature Photonics, 2009, 3(10): 569-576. doi: 10.1038/nphoton.2009.184
    [4]
    WU G J, TIAN B B, LIU L, et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains[J]. Nature Electronics, 2020, 3(1): 43-50. doi: 10.1038/s41928-019-0350-y
    [5]
    APPENZELLER J, KNOCH J, BJORK M T, et al. Toward nanowire electronics[J]. IEEE Transactions on Electron Devices, 2008, 55(11): 2827-2845. doi: 10.1109/TED.2008.2008011
    [6]
    HONG W K, SOHN J I, HWANG D K, et al. Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors[J]. Nano Letters, 2008, 8(3): 950-956. doi: 10.1021/nl0731116
    [7]
    CUI Y, WEI Q Q, PARK H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science, 2001, 293(5533): 1289-1292. doi: 10.1126/science.1062711
    [8]
    ZHENG G F, PATOLSKY F, CUI Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays[J]. Nature Biotechnology, 2005, 23(10): 1294-1301. doi: 10.1038/nbt1138
    [9]
    HUANG M H, MAO S, FEICK H, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899. doi: 10.1126/science.1060367
    [10]
    WAN Q, LI Q H, CHEN Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors[J]. Applied Physics Letters, 2004, 84(18): 3654-3656. doi: 10.1063/1.1738932
    [11]
    GOMES U P, ERCOLANI D, ZANNIER V, et al. Controlling the diameter distribution and density of InAs nanowires grown by Au-assisted methods[J]. Semiconductor Science and Technology, 2015, 30(11): 115012. doi: 10.1088/0268-1242/30/11/115012
    [12]
    ROCCI M, DEMONTIS V, PRETE D, et al. Suspended InAs nanowire-based devices for thermal conductivity measurement using the 3ω method[J]. Journal of Materials Engineering and Performance, 2018, 27(12): 6299-6305. doi: 10.1007/s11665-018-3715-x
    [13]
    SU M, ZOU X M, GONG Y N, et al. Sub-kT/q switching in In2O3 nanowire negative capacitance field-effect transistors[J]. Nanoscale, 2018, 10(40): 19131-19139. doi: 10.1039/C8NR06163G
    [14]
    KONG Y C, YU D P, ZHANG B, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J]. Applied Physics Letters, 2001, 78(4): 407-409. doi: 10.1063/1.1342050
    [15]
    YANG M, PANG G SH, JIANG L F, et al. Hydrothermal synthesis of one-dimensional zinc oxides with different precursors[J]. Nanotechnology, 2006, 17(1): 206-212. doi: 10.1088/0957-4484/17/1/034
    [16]
    ZOU X M, LIU X Q, WANG C L, et al. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors[J]. ACS Nano, 2013, 7(1): 804-810. doi: 10.1021/nn305289w
    [17]
    LIU Z W, ONG C, YU T, et al. Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties[J]. Applied Physics Letters, 2006, 88(5): 053110. doi: 10.1063/1.2168675
    [18]
    ZHANG D H, LI C, HAN S, et al. Electronic transport studies of single-crystalline In2O3 nanowires[J]. Applied Physics Letters, 2003, 82(1): 112-114. doi: 10.1063/1.1534938
    [19]
    MENG M, WU X L, JI X L, et al. Ultrahigh quantum efficiency photodetector and ultrafast reversible surface wettability transition of square In2O3 nanowires[J]. Nano Research, 2017, 10(8): 2772-2781. doi: 10.1007/s12274-017-1481-y
    [20]
    SHAO D L, QIN L Q, SAWYER S. Near ultraviolet photodetector fabricated from polyvinyl-alcohol coated In2O3 nanoparticles[J]. Applied Surface Science, 2012, 261: 123-127. doi: 10.1016/j.apsusc.2012.07.111
    [21]
    ZHU H Y, WANG Y, XIAO J, et al. Observation of piezoelectricity in free-standing monolayer MoS2[J]. Nature Nanotechnology, 2015, 10(2): 151-155. doi: 10.1038/nnano.2014.309
    [22]
    SU M, YANG ZH Y, LIAO L, et al. Side-Gated In2O3 nanowire ferroelectric FETs for high-performance nonvolatile memory applications[J]. Advanced Science, 2016, 3(9): 1600078. doi: 10.1002/advs.201600078
    [23]
    KONSTANTATOS G, SARGENT E H. Nanostructured materials for photon detection[J]. Nature Nanotechnology, 2010, 5(6): 391-400. doi: 10.1038/nnano.2010.78
    [24]
    ZHENG D SH, WANG J L, HU W D, et al. When nanowires meet ultrahigh ferroelectric field–high-performance full-depleted nanowire photodetectors[J]. Nano Letters, 2016, 16(4): 2548-2555. doi: 10.1021/acs.nanolett.6b00104
    [25]
    GUO N, HU W D, LIAO L, et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature[J]. Advanced Materials, 2014, 26(48): 8203-8209. doi: 10.1002/adma.201403664
    [26]
    SOCI C, ZHANG A, XIANG B, et al. ZnO nanowire UV photodetectors with high internal gain[J]. Nano Letters, 2007, 7(4): 1003-1009. doi: 10.1021/nl070111x
    [27]
    GONG X, TONG M H, XIA Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667. doi: 10.1126/science.1176706
    [28]
    DAS K, MUKHERJEE S, MANNA S, et al. Single Si nanowire (diameter ≤ 100 nm) based polarization sensitive near-infrared photodetector with ultra-high responsivity[J]. Nanoscale, 2014, 6(19): 11232-11239. doi: 10.1039/C4NR03170A
    [29]
    LU J F, XU C X, DAI J, et al. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles[J]. Nanoscale, 2015, 7(8): 3396-3403. doi: 10.1039/C4NR07114J
    [30]
    LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501. doi: 10.1038/nnano.2013.100
    [31]
    HUANG S Y, OU G, CHENG J, et al. Ultrasensitive visible light photoresponse and electrical transportation properties of nonstoichiometric indium oxide nanowire arrays by electrospinning[J]. Journal of Materials Chemistry C, 2013, 1(39): 6463-6470. doi: 10.1039/c3tc31051e
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(1533) PDF downloads(97) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map