Volume 13Issue 6
Dec. 2020
Turn off MathJax
Article Contents
TANG Yang. Tailoring the optical properties of Al-doped ZnO Nanorods by electrodeposition[J]. Chinese Optics, 2020, 13(6): 1257-1266. doi: 10.37188/CO.2020-0075
Citation: TANG Yang. Tailoring the optical properties of Al-doped ZnO Nanorods by electrodeposition[J].Chinese Optics, 2020, 13(6): 1257-1266.doi:10.37188/CO.2020-0075

Tailoring the optical properties of Al-doped ZnO Nanorods by electrodeposition

doi:10.37188/CO.2020-0075
Funds:National Natural Science Foundation of China (No. 61404007); the Beijing Talents Fund (No. 2015000021223ZK38)
More Information
  • Corresponding author:ytang118@163.com
  • Received Date:27 Apr 2020
  • Rev Recd Date:27 May 2020
  • Available Online:10 Sep 2020
  • Publish Date:01 Dec 2020
  • In order to achieve the implantation of the ZnO nanorod arrays in the nanostructured solar cells, it is necessary to tailor and control the nanorods’ morphology, optical and electrical properties. ZnO nanorods arrays were fabricated by electrodeposition. The physical properties such as the crystalline quality, diameter, density, distance, Al doping concentration, optical band gap energy, near band emission and stokes shift can be adjusted by using Al(NO 3) 3and NH 4NO 3. The ZnO nanorods’ diameter can be adjusted from 28 nm to 102 nm. The nanorod arrays’ density can be reduced to 2.7×10 9/cm 2by using NH 4NO 3, resulting in an increase in the distance between nanorods to 164 nm. The Al/Zn weight ratio was increased to 2.92% by using NH 4NO 3, indicating that NH 4NO 3can boost Al doping in ZnO nanorods. The ZnO nanorods’ optical band gap energy can be tailored from 3.36 eV to 3.55 eV by using Al(NO 3) 3and NH 4NO 3and the near band edge emission can also be adjusted. The use of Al(NO 3) 3led to the increase of the Stokes shift to 200 meV, but it can be greatly reduced to 26 meV as a result of the NH 4NO 3. The use of Al(NO 3) 3and NH 4NO 3resulted in the fabrication of high-quality ZnO nanorod arrays with effectively tailored morphology and optical properties.

  • loading
  • [1]
    KIM D, YUN I, KIM H. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells[J]. Current Applied Physics, 2010, 10(3): S459-S462. doi:10.1016/j.cap.2010.02.030
    [2]
    LUKA G, WITKOWSKI B S, WACHNICKI L. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition[J]. Materials Science and Engineering: B, 2014, 186: 15-20. doi:10.1016/j.mseb.2014.03.002
    [3]
    COMAN T, URSU E L, NICA V, et al. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition[J]. Thin Solid Films, 2014, 571: 198-205. doi:10.1016/j.tsf.2014.10.037
    [4]
    DUYGULU N E, KODOLBAS A O, EKERIM A. Effects of argon pressure and r. f. power on magnetron sputtered aluminum doped ZnO thin films[J]. Journal of Crystal Growth, 2014, 394: 116-125. doi:10.1016/j.jcrysgro.2014.02.028
    [5]
    CHEN J, YE H, AÉ L, et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications[J]. Solar Energy Materials and Solar Cells, 2011, 95(6): 1437-1440. doi:10.1016/j.solmat.2010.10.006
    [6]
    RIEDEL W, TANG Y, OHM W, et al. Effect of initial galvanic nucleation on morphological and optical properties of ZnO nanorod arrays[J]. Thin Solid Films, 2015, 574: 177-183. doi:10.1016/j.tsf.2014.12.006
    [7]
    GUO L D, TANG Y, CHIANG F K, et al. Density-controlled growth and passivation of ZnO nanorod arrays by electrodeposition[J]. Thin Solid Films, 2017, 638: 426-432. doi:10.1016/j.tsf.2017.08.015
    [8]
    汤洋, 郭逦达, 张增光, 等. 硝酸铵诱导电沉积氧化锌纳米柱的铝掺杂及光学性质操控[J]. 光学 精密工程,2015,23(5):1288-1296. doi:10.3788/OPE.20152305.1288

    TANG Y, GUO L D, ZHANG Z G, et al. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate[J]. Optics and Precision Engineering, 2015, 23(5): 1288-1296. (in Chinese) doi:10.3788/OPE.20152305.1288
    [9]
    TANG Y, CHEN J, GREINER D, et al. Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5239-5243. doi:10.1021/jp109022k
    [10]
    KUMAR A, HUANG N, STAEDLER T, et al. Mechanical characterization of aluminum doped zinc oxide (Al: ZnO) nanorods prepared by sol–gel method[J]. Applied Surface Science, 2013, 265: 758-763. doi:10.1016/j.apsusc.2012.11.101
    [11]
    CHEN ZH W, ZHAN G H, WU Y P, et al. Sol–gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology[J]. Journal of Alloys and Compounds, 2014, 587: 692-697. doi:10.1016/j.jallcom.2013.10.241
    [12]
    汤洋, 赵颖, 张增光, 等. 氧化锌纳米柱阵列的水热合成及其性能[J]. 材料研究学报,2015,29(7):529-534.

    TANG Y, ZHAO Y, ZHANG Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays[J]. Chinese Journal of Materials Research, 2015, 29(7): 529-534. (in Chinese)
    [13]
    汤洋, 陈颉. 电沉积掺铝氧化锌纳米柱的光学带隙蓝移与斯托克斯位移[J]. 发光学报,2014,35(10):1165-1171. doi:10.3788/fgxb20143510.1165

    TANG Y, CHEN J. Optical band gap blue shift and stokes shift in Al-doped ZnO nanorods by electrodeposition[J]. Chinese Journal of Luminescence, 2014, 35(10): 1165-1171. (in Chinese) doi:10.3788/fgxb20143510.1165
    [14]
    胡明江, 晋兵营. 基于CuO/ZnO异质结纳米花的薄膜型丙酮传感器研究[J]. 分析化学,2019,47(3):363-370.

    HU M J, JIN B Y. Research on film type acetone sensor based on copper oxide/zinc oxide heterostructure nanoflower[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 363-370. (in Chinese)
    [15]
    梁彩云, 刘凤平, 张翠忠, 等. 基于铜纳米粒子/氧化锌/石墨烯修饰电极的电化学方法测定硫酸卡那霉素[J]. 分析化学,2019,47(5):739-747.

    LIANG C Y, LIU F P, ZHANG C ZH, et al. Electrochemical determination of kanamycin sulfate based on copper nanoparticle/zinc oxide/graphene modified electrode[J]. Chinese Journal of Analytical Chemistry, 2019, 47(5): 739-747. (in Chinese)
    [16]
    刘书绘, 雷杰, 吴媛, 等. 基于四氧化三钴-多壁碳纳米管纳米复合材料修饰阳极的苯酚/氧气燃料电池的构建[J]. 分析化学,2019,47(8):1195-1204.

    LIU SH H, LEI J, WU Y, et al. Cobaltosic oxide-multi-walled carbon nanotubes nanocomposite-modified electrode as anode[J]. Chinese Journal of Analytical Chemistry, 2019, 47(8): 1195-1204. (in Chinese)
    [17]
    唐小强, 陈裕雲, 罗燕妮, 等. 基于TiO 2NRs@ZnIn 2S 4NSs复合材料的谷胱甘肽光电化学传感器的构建与应用[J]. 分析化学,2019,47(8):1188-1194.

    TANG X Q, CHEN Y Y, LUO Y N, et al. Photoelectrochemical sensor based on titanium dioxide nanorods@ZnIn 2S 4nanosheets nanocomposites[J]. Chinese Journal of Analytical Chemistry, 2019, 47(8): 1188-1194. (in Chinese)
    [18]
    CHO S, JUNG S H, JANG J W, et al. Simultaneous synthesis of Al-doped ZnO nanoneedles and zinc aluminum hydroxides through use of a seed layer[J]. Crystal Growth and Design, 2008, 8(12): 4553-4558. doi:10.1021/cg800593q
    [19]
    KIM C E, MOON P, KIM S, et al. Effect of carrier concentration on optical bandgap shift in ZnO: Ga thin films[J]. Thin Solid Films, 2010, 518(22): 6304-6307. doi:10.1016/j.tsf.2010.03.042
    [20]
    CHEN J, AÉ L, LUX-STEINER M C. High internal quantum efficiency ZnO nanorods prepared at low temperature[J]. Applied Physics Letters, 2008, 92(16): 161906. doi:10.1063/1.2910769
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)/Tables(2)

    Article views(1240) PDF downloads(54) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map