Citation: | TANG Yang. Tailoring the optical properties of Al-doped ZnO Nanorods by electrodeposition[J].Chinese Optics, 2020, 13(6): 1257-1266.doi:10.37188/CO.2020-0075 |
[1] |
KIM D, YUN I, KIM H. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells[J].
Current Applied Physics, 2010, 10(3): S459-S462.
doi:10.1016/j.cap.2010.02.030
|
[2] |
LUKA G, WITKOWSKI B S, WACHNICKI L. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition[J].
Materials Science and Engineering:
B, 2014, 186: 15-20.
doi:10.1016/j.mseb.2014.03.002
|
[3] |
COMAN T, URSU E L, NICA V,
et al. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition[J].
Thin Solid Films, 2014, 571: 198-205.
doi:10.1016/j.tsf.2014.10.037
|
[4] |
DUYGULU N E, KODOLBAS A O, EKERIM A. Effects of argon pressure and r. f. power on magnetron sputtered aluminum doped ZnO thin films[J].
Journal of Crystal Growth, 2014, 394: 116-125.
doi:10.1016/j.jcrysgro.2014.02.028
|
[5] |
CHEN J, YE H, AÉ L,
et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications[J].
Solar Energy Materials and Solar Cells, 2011, 95(6): 1437-1440.
doi:10.1016/j.solmat.2010.10.006
|
[6] |
RIEDEL W, TANG Y, OHM W,
et al. Effect of initial galvanic nucleation on morphological and optical properties of ZnO nanorod arrays[J].
Thin Solid Films, 2015, 574: 177-183.
doi:10.1016/j.tsf.2014.12.006
|
[7] |
GUO L D, TANG Y, CHIANG F K,
et al. Density-controlled growth and passivation of ZnO nanorod arrays by electrodeposition[J].
Thin Solid Films, 2017, 638: 426-432.
doi:10.1016/j.tsf.2017.08.015
|
[8] |
汤洋, 郭逦达, 张增光, 等. 硝酸铵诱导电沉积氧化锌纳米柱的铝掺杂及光学性质操控[J]. 光学 精密工程,2015,23(5):1288-1296.
doi:10.3788/OPE.20152305.1288
TANG Y, GUO L D, ZHANG Z G,
et al. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate[J].
Optics and Precision Engineering, 2015, 23(5): 1288-1296. (in Chinese)
doi:10.3788/OPE.20152305.1288
|
[9] |
TANG Y, CHEN J, GREINER D,
et al. Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution[J].
The Journal of Physical Chemistry C, 2011, 115(13): 5239-5243.
doi:10.1021/jp109022k
|
[10] |
KUMAR A, HUANG N, STAEDLER T,
et al. Mechanical characterization of aluminum doped zinc oxide (Al: ZnO) nanorods prepared by sol–gel method[J].
Applied Surface Science, 2013, 265: 758-763.
doi:10.1016/j.apsusc.2012.11.101
|
[11] |
CHEN ZH W, ZHAN G H, WU Y P,
et al. Sol–gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology[J].
Journal of Alloys and Compounds, 2014, 587: 692-697.
doi:10.1016/j.jallcom.2013.10.241
|
[12] |
汤洋, 赵颖, 张增光, 等. 氧化锌纳米柱阵列的水热合成及其性能[J]. 材料研究学报,2015,29(7):529-534.
TANG Y, ZHAO Y, ZHANG Z G,
et al. Hydrothermal synthesis and properties of ZnO nanorod arrays[J].
Chinese Journal of Materials Research, 2015, 29(7): 529-534. (in Chinese)
|
[13] |
汤洋, 陈颉. 电沉积掺铝氧化锌纳米柱的光学带隙蓝移与斯托克斯位移[J]. 发光学报,2014,35(10):1165-1171.
doi:10.3788/fgxb20143510.1165
TANG Y, CHEN J. Optical band gap blue shift and stokes shift in Al-doped ZnO nanorods by electrodeposition[J].
Chinese Journal of Luminescence, 2014, 35(10): 1165-1171. (in Chinese)
doi:10.3788/fgxb20143510.1165
|
[14] |
胡明江, 晋兵营. 基于CuO/ZnO异质结纳米花的薄膜型丙酮传感器研究[J]. 分析化学,2019,47(3):363-370.
HU M J, JIN B Y. Research on film type acetone sensor based on copper oxide/zinc oxide heterostructure nanoflower[J].
Chinese Journal of Analytical Chemistry, 2019, 47(3): 363-370. (in Chinese)
|
[15] |
梁彩云, 刘凤平, 张翠忠, 等. 基于铜纳米粒子/氧化锌/石墨烯修饰电极的电化学方法测定硫酸卡那霉素[J]. 分析化学,2019,47(5):739-747.
LIANG C Y, LIU F P, ZHANG C ZH,
et al. Electrochemical determination of kanamycin sulfate based on copper nanoparticle/zinc oxide/graphene modified electrode[J].
Chinese Journal of Analytical Chemistry, 2019, 47(5): 739-747. (in Chinese)
|
[16] |
刘书绘, 雷杰, 吴媛, 等. 基于四氧化三钴-多壁碳纳米管纳米复合材料修饰阳极的苯酚/氧气燃料电池的构建[J]. 分析化学,2019,47(8):1195-1204.
LIU SH H, LEI J, WU Y,
et al. Cobaltosic oxide-multi-walled carbon nanotubes nanocomposite-modified electrode as anode[J].
Chinese Journal of Analytical Chemistry, 2019, 47(8): 1195-1204. (in Chinese)
|
[17] |
唐小强, 陈裕雲, 罗燕妮, 等. 基于TiO
2NRs@ZnIn
2S
4NSs复合材料的谷胱甘肽光电化学传感器的构建与应用[J]. 分析化学,2019,47(8):1188-1194.
TANG X Q, CHEN Y Y, LUO Y N,
et al. Photoelectrochemical sensor based on titanium dioxide nanorods@ZnIn
2S
4nanosheets nanocomposites[J].
Chinese Journal of Analytical Chemistry, 2019, 47(8): 1188-1194. (in Chinese)
|
[18] |
CHO S, JUNG S H, JANG J W,
et al. Simultaneous synthesis of Al-doped ZnO nanoneedles and zinc aluminum hydroxides through use of a seed layer[J].
Crystal Growth and Design, 2008, 8(12): 4553-4558.
doi:10.1021/cg800593q
|
[19] |
KIM C E, MOON P, KIM S,
et al. Effect of carrier concentration on optical bandgap shift in ZnO: Ga thin films[J].
Thin Solid Films, 2010, 518(22): 6304-6307.
doi:10.1016/j.tsf.2010.03.042
|
[20] |
CHEN J, AÉ L, LUX-STEINER M C. High internal quantum efficiency ZnO nanorods prepared at low temperature[J].
Applied Physics Letters, 2008, 92(16): 161906.
doi:10.1063/1.2910769
|