Volume 14Issue 1
Jan. 2021
Turn off MathJax
Article Contents
WEI Jing, WANG Qiu-wen, SUN Xiang-yu, LI Hong-bo. Research progress of quasi-two-dimensional perovskite solar cells[J]. Chinese Optics, 2021, 14(1): 100-116. doi: 10.37188/CO.2020-0082
Citation: WEI Jing, WANG Qiu-wen, SUN Xiang-yu, LI Hong-bo. Research progress of quasi-two-dimensional perovskite solar cells[J].Chinese Optics, 2021, 14(1): 100-116.doi:10.37188/CO.2020-0082

Research progress of quasi-two-dimensional perovskite solar cells

doi:10.37188/CO.2020-0082
Funds:Supported by National Natural Science Foundation of China (No. 21701015; No. 21811530054)
More Information
  • Corresponding author:hongbo.li@bit.edu.cn
  • Received Date:03 May 2020
  • Rev Recd Date:27 May 2020
  • Available Online:30 Dec 2020
  • Publish Date:25 Jan 2021
  • At present, the power conversion efficiency of perovskite solar cells exceeds 25%. Their rapidly increasing efficiency has made people increasingly optimistic about their commercial application, but the stability of perovskite remains the biggest obstacle to successful commercialization. Quasi-two-dimensional perovskite solves this problem.
    Utilizing the hydrophobicity and thermal stability of large organic spacer cations, quasi-two-dimensional perovskite can effectively improve the stability of perovskite and improved crystal formation energy while providing a more stable structure. Quasi-two-dimensional perovskite also invites significant improvement to the morphology of perovskite films, which can replace anti-solvent processes, simplify production, and meet the industrial production requirements of perovskite. However, the relatively large band-gap and low carrier mobility caused by insulated organic spacer cations hinder ion transmission, causing quasi-two-dimensional perovskite solar cells to be far less efficient than three-dimensional perovskite solar cells. Therefore, for quasi-two-dimensional perovskite, it is necessary to further study its characteristics and device applications to achieve further optimization of device performance.
    This article summarizes the research progress of quasi-two-dimensional perovskite solar cells, the molecular structure of quasi-two-dimensional perovskite, the methods and principles of quasi-two-dimensional doping that improves the stability of three-dimensional perovskite, and the phase distribution and carrier transport characteristics of quasi-two-dimensional perovskite. Then this paper analyzes the problems faced by quasi-two-dimensional perovskite solar cells and looks forward to their prospects. It is expected that it will provide a reference for the preparation of efficient and stable quasi-two-dimensional perovskite solar cells.

  • loading
  • [1]
    LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647. doi:10.1126/science.1228604
    [2]
    LI ZH, YANG M J, PARK J S, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of Materials, 2016, 28(1): 284-292. doi:10.1021/acs.chemmater.5b04107
    [3]
    AMAT A, MOSCONI E, RONCA E, et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting[J]. Nano Letters, 2014, 14(6): 3608-3616. doi:10.1021/nl5012992
    [4]
    KIM H S, IM S H, PARK N G. Organolead halide perovskite: new horizons in solar cell research[J]. The Journal of Physical Chemistry C, 2014, 118(11): 5615-5625. doi:10.1021/jp409025w
    [5]
    GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. doi:10.1038/nphoton.2014.134
    [6]
    CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells[J]. Science, 2017, 358(6364): 739-744. doi:10.1126/science.aam6323
    [7]
    LI W, WANG ZH M, DESCHLER F, et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites[J]. Nature Reviews Materials, 2017, 2(3): 16099. doi:10.1038/natrevmats.2016.99
    [8]
    CHEN SH, SHI G Q. Two-dimensional materials for halide perovskite-based optoelectronic devices[J]. Advanced Materials, 2017, 29(24): 1605448. doi:10.1002/adma.201605448
    [9]
    XING G CH, MATHEWS N, SUN SH Y, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH 3NH 3PbI 3[J]. Science, 2013, 342(6156): 344-347. doi:10.1126/science.1243167
    [10]
    PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX 3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696. doi:10.1021/nl5048779
    [11]
    WEI J, SHI C L, ZHAO Y CH, et al. Potentials and challenges towards application of perovskite solar cells[J]. Science China Materials, 2016, 59(9): 769-778. doi:10.1007/s40843-016-5082-4
    [12]
    WEI J, ZHAO Q, LI H, et al. Perovskite solar cells: promise of photovoltaics[J]. Scientia Sinica Technologica, 2014, 44(8): 801-821. doi:10.1360/N092014-00135
    [13]
    KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. doi:10.1021/ja809598r
    [14]
    NREL efficiency chart[EB/OL]. [2020-03-11]. https://www.nrel.gov/pv/cell-efficiency.html.
    [15]
    WANG Z, SHI Z J, LI T T, et al. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion[J]. Angewandte Chemie International Edition, 2017, 56(5): 1190-1212. doi:10.1002/anie.201603694
    [16]
    LI ZH, XIAO CH X, YANG Y, et al. Extrinsic ion migration in perovskite solar cells[J]. Energy& Environmental Science, 2017, 10(5): 1234-1242.
    [17]
    CHEN B, RUDD P N, YANG SH, et al. Imperfections and their passivation in halide perovskite solar cells[J]. Chemical Society Reviews, 2019, 48(14): 3842-3867. doi:10.1039/C8CS00853A
    [18]
    LANG F, SHARGAIEVA O, BRUS V V, et al. Influence of radiation on the properties and the stability of hybrid perovskites[J]. Advanced Materials, 2018, 30(3): 1702905. doi:10.1002/adma.201702905
    [19]
    WEI J, LI H, ZHAO Y CH, et al. Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network[J]. Nano Energy, 2016, 26: 139-147. doi:10.1016/j.nanoen.2016.05.023
    [20]
    WEI J, ZHAO Y CH, LI H, et al. Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2014, 5(21): 3937-3945. doi:10.1021/jz502111u
    [21]
    ZHAO Y CH, WEI J, LI H, et al. A polymer scaffold for self-healing perovskite solar cells[J]. Nature Communications, 2016, 7(1): 10228. doi:10.1038/ncomms10228
    [22]
    WEI J, GUO F W, WANG X, et al. SnO 2-in-polymer matrix for high-efficiency perovskite solar cells with improved reproducibility and stability[J]. Advanced Materials, 2018, 30(52): 1805153. doi:10.1002/adma.201805153
    [23]
    WEI J, GUO F W, LIU B, et al. UV-inert ZnTiO 3electron selective layer for photostable perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(40): 1901620. doi:10.1002/aenm.201901620
    [24]
    LEI Y, GU L Y, HE W W, et al. Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture[J]. Journal of Materials Chemistry A, 2016, 4(15): 5474-5481. doi:10.1039/C6TA00614K
    [25]
    ETGAR L. The merit of perovskite's dimensionality; can this replace the 3D halide perovskite?[J]. Energy& Environmental Science, 2018, 11(2): 234-242.
    [26]
    WANG H, DONG Z, LIU H, et al. Roles of organic molecules in inorganic CsPbX 3perovskite solar cells[J]. Advanced Energy Materials, 2020, 200290.
    [27]
    ZHANG Y L, WANG P J, TANG M CH, et al. Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics[J]. Journal of the American Chemical Society, 2019, 141(6): 2684-2694. doi:10.1021/jacs.8b13104
    [28]
    ZHANG ZH SH, FANG W H, LONG R, et al. Exciton dissociation and suppressed charge recombination at 2D perovskite edges: Key roles of unsaturated halide bonds and thermal disorder[J]. Journal of the American Chemical Society, 2019, 141(39): 15557-15566. doi:10.1021/jacs.9b06046
    [29]
    ZHOU N, HUANG B L, SUN M Z, et al. The spacer cations interplay for efficient and stable layered 2D perovskite solar cells[J]. Advanced Energy Materials, 2020, 10(1): 1901566. doi:10.1002/aenm.201901566
    [30]
    LI C H, LIAO M Y, CHEN C H, et al. Recent progress of anion-based 2D perovskites with different halide substitutions[J]. Journal of Materials Chemistry C, 2020, 8(13): 4294-4302. doi:10.1039/C9TC06964J
    [31]
    LI X T, KE W J, TRAORÉ B, et al. Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations[J]. Journal of the American Chemical Society, 2019, 141(32): 12880-12890. doi:10.1021/jacs.9b06398
    [32]
    MAO L L, STOUMPOS C C, KANATZIDIS M G. Two-dimensional hybrid halide perovskites: principles and promises[J]. Journal of the American Chemical Society, 2019, 141(3): 1171-1190. doi:10.1021/jacs.8b10851
    [33]
    GANGADHARAN D T, MA D L. Searching for stability at lower dimensions: current trends and future prospects of layered perovskite solar cells[J]. Energy& Environmental Science, 2019, 12(10): 2860-2889.
    [34]
    ZHOU T, LAI H T, LIU T T, et al. Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite[J]. Advanced Materials, 2019, 31(32): 1901242.
    [35]
    FU Y P, ZHENG W H, WANG X X, et al. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer[J]. Journal of the American Chemical Society, 2018, 140(46): 15675-15683. doi:10.1021/jacs.8b07843
    [36]
    GRANCINI G, NAZEERUDDIN M K. Dimensional tailoring of hybrid perovskites for photovoltaics[J]. Nature Reviews Materials, 2019, 4(1): 4-22. doi:10.1038/s41578-018-0065-0
    [37]
    TIAN X X, ZHANG Y ZH, ZHENG R K, et al. Two-dimensional organic-inorganic hybrid Ruddlesden-Popper perovskite materials: preparation, enhanced stability, and applications in photodetection[J]. Sustainable Energy& Fuels, 2020, 4(5): 2087-2113.
    [38]
    HUANG P, KAZIM S, WANG M K, et al. Toward phase stability: dion-Jacobson layered perovskite for solar cells[J]. ACS Energy Letters, 2019, 4(12): 2960-2974. doi:10.1021/acsenergylett.9b02063
    [39]
    MA S, CAI M L, CHENG T, et al. Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications[J]. Science China Materials, 2018, 61(10): 1257-1277. doi:10.1007/s40843-018-9294-5
    [40]
    LIAO Y Q, LIU H F, ZHOU W J, et al. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance[J]. Journal of the American Chemical Society, 2017, 139(19): 6693-6699. doi:10.1021/jacs.7b01815
    [41]
    BAI Y, XIAO SH, HU CH, et al. Dimensional engineering of a graded 3D-2D halide perovskite interface enables ultrahigh V ocenhanced stability in the p-i-n photovoltaics[J]. Advanced Energy Materials, 2017, 7(20): 1701038. doi:10.1002/aenm.201701038
    [42]
    GAN X Y, WANG O, LIU K Y, et al. 2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2017, 162: 93-102. doi:10.1016/j.solmat.2016.12.047
    [43]
    LI N, ZHU Z L, CHUEH CH CH, et al. Mixed cation FA xPEA 1–xPbI 3with enhanced phase and ambient stability toward high-performance perovskite solar cells[J]. Advanced Energy Materials, 2017, 7(1): 1601307. doi:10.1002/aenm.201601307
    [44]
    HA S T, LIU X F, ZHANG Q, et al. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices[J]. Advanced Optical Materials, 2014, 2(9): 838-844. doi:10.1002/adom.201400106
    [45]
    WANG Y P, SHI Y F, XIN G Q, et al. Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide[J]. Crystal Growth& Design, 2015, 15(10): 4741-4749.
    [46]
    QUAN L N, YUAN M J, COMIN R, et al. Ligand-stabilized reduced-dimensionality perovskites[J]. Journal of the American Chemical Society, 2016, 138(8): 2649-2655. doi:10.1021/jacs.5b11740
    [47]
    LENG K, FU W, LIU Y P, et al. From bulk to molecularly thin hybrid perovskites[J]. Nature Reviews Materials, 2020, 5(7): 482-500. doi:10.1038/s41578-020-0185-1
    [48]
    DANG Y Y, WEI J, LIU X L, et al. Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility[J]. Sustainable Energy& Fuels, 2018, 2(10): 2237-2243.
    [49]
    TAKEOKA Y, FUKASAWA M, MATSUI T, et al. Intercalated formation of two-dimensional and multi-layered perovskites in organic thin films[J]. Chemical Communications, 2005(3): 378-380. doi:10.1039/b413398f
    [50]
    KAMMINGA M E, FANG H H, FILIP M R, et al. Confinement effects in low-dimensional lead iodide perovskite hybrids[J]. Chemistry of Materials, 2016, 28(13): 4554-4562. doi:10.1021/acs.chemmater.6b00809
    [51]
    SUN SH Y, SALIM T, MATHEWS N, et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells[J]. Energy& Environmental Science, 2014, 7(1): 399-407.
    [52]
    REN H, YU SH D, CHAO L F, et al. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction[J]. Nature Photonics, 2020, 14(3): 154-163. doi:10.1038/s41566-019-0572-6
    [53]
    SONG J X, BIAN J, ZHENG E Q, et al. Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer[J]. Chemistry Letters, 2015, 44(5): 610-612. doi:10.1246/cl.150056
    [54]
    LIU Y H, AKIN S, PAN L F, et al. Ultrahydrophobic 3D / 2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%[J]. Science Advances, 2019, 5(6): eaaw2543. doi:10.1126/sciadv.aaw2543
    [55]
    CHO K T, GRANCINI G, LEE Y H, et al. Selective growth of layered perovskites for stable and efficient photovoltaics[J]. Energy& Environmental Science, 2018, 11(4): 952-959.
    [56]
    GRANCINI G, ROLDÁN-CARMONA C, ZIMMERMANN I, et al. One-year stable perovskite solar cells by 2D/3D interface engineering[J]. Nature Communications, 2017, 8(1): 15684. doi:10.1038/ncomms15684
    [57]
    LUO T, ZHANG Y L, XU ZH, et al. Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%[J]. Advanced Materials, 2019, 31(44): 1903848. doi:10.1002/adma.201903848
    [58]
    PROPPE A H, WEI M Y, CHEN B, et al. Photochemically cross-linked quantum well ligands for 2D/3D perovskite photovoltaics with improved photovoltage and stability[J]. Journal of the American Chemical Society, 2019, 141(36): 14180-14189. doi:10.1021/jacs.9b05083
    [59]
    WANG ZH P, LIN Q Q, CHMIEL F P, et al. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites[J]. Nature Energy, 2017, 2(9): 17135. doi:10.1038/nenergy.2017.135
    [60]
    LI P W, ZHANG Y Q, LIANG CH, et al. Phase pure 2D perovskite for high-performance 2D-3D heterostructured perovskite solar cells[J]. Advanced Materials, 2018, 30(52): 1805323. doi:10.1002/adma.201805323
    [61]
    YANG R, LI R ZH, CAO Y, et al. Oriented quasi-2D perovskites for high performance optoelectronic devices[J]. Advanced Materials, 2018, 30(51): 1804771. doi:10.1002/adma.201804771
    [62]
    CHEN J ZH, SEO J Y, PARK N G. Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI 3) 0.88(CsPbBr 3) 0.12/CuSCN interface[J]. Advanced Energy Materials, 2018, 8(12): 1702714. doi:10.1002/aenm.201702714
    [63]
    LEE J W, DAI ZH H, HAN T H, et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells[J]. Nature Communications, 2018, 9(1): 3021. doi:10.1038/s41467-018-05454-4
    [64]
    LEE D S, YUN J S, KIM J, et al. Passivation of grain boundaries by phenethylammonium in formamidinium-methylammonium lead halide perovskite solar cells[J]. ACS Energy Letters, 2018, 3(3): 647-654. doi:10.1021/acsenergylett.8b00121
    [65]
    LAI H T, KAN B, LIU T T, et al. Two-dimensional Ruddlesden-Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%[J]. Journal of the American Chemical Society, 2018, 140(37): 11639-11646. doi:10.1021/jacs.8b04604
    [66]
    MA CH Q, SHEN D, NG T W, et al. 2D perovskites with short interlayer distance for high-performance solar cell application[J]. Advanced Materials, 2018, 30(22): 1800710. doi:10.1002/adma.201800710
    [67]
    HU Y Q, QIU T, BAI F, et al. Highly efficient and stable solar cells with 2D MA 3Bi 2I 9/3D MAPbI 3heterostructured perovskites[J]. Advanced Energy Materials, 2018, 8(19): 1703620. doi:10.1002/aenm.201703620
    [68]
    WANG X T, WANG Y, ZHANG T Y, et al. Steric mixed-cation 2D perovskite as a methylammonium locker to stabilize MAPbI 3[J]. Angewandte Chemie International Edition, 2020, 59(4): 1469-1473. doi:10.1002/anie.201911518
    [69]
    SHI J SH, GAO Y R, GAO X, et al. Fluorinated low-dimensional Ruddlesden-Popper perovskite solar cells with over 17% power conversion efficiency and improved stability[J]. Advanced Materials, 2019, 31(37): 1901673. doi:10.1002/adma.201901673
    [70]
    ZHANG F, KIM D H, LU H P, et al. Enhanced charge transport in 2D perovskites via fluorination of organic cation[J]. Journal of the American Chemical Society, 2019, 141(14): 5972-5979. doi:10.1021/jacs.9b00972
    [71]
    WANG K, LI ZH Z, ZHOU F G, et al. Ruddlesden-Popper 2D component to stabilize γ-CsPbI 3perovskite phase for stable and efficient photovoltaics[J]. Advanced Energy Materials, 2019, 9(42): 1902529. doi:10.1002/aenm.201902529
    [72]
    LIN Y, BAI Y, FANG Y J, et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 654-658. doi:10.1021/acs.jpclett.7b02679
    [73]
    MA CH Y, LENG CH Q, JI Y X, et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells[J]. Nanoscale, 2016, 8(43): 18309-18314. doi:10.1039/C6NR04741F
    [74]
    KIM H, LEE S U, LEE D Y, et al. Perovskite solar cells: optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(47): 1970187. doi:10.1002/aenm.201970187
    [75]
    ZHENG Y F, YANG X Y, SU R, et al. High-performance CsPbI xBr 3-xall-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation[J]. Advanced Functional Materials, 2020: 2000457. doi:10.1002/adfm.202000457
    [76]
    KIM H S, SEO J Y, PARK N G. Material and device stability in perovskite solar cells[J]. ChemSusChem, 2016, 9(18): 2528-2540. doi:10.1002/cssc.201600915
    [77]
    SUPASAI T, RUJISAMPHAN N, ULLRICH K, et al. Formation of a passivating CH 3NH 3PbI 3/PbI 2interface during moderate heating of CH 3NH 3PbI 3layers[J]. Applied Physics Letters, 2013, 103(18): 183906. doi:10.1063/1.4826116
    [78]
    ARISTIDOU N, SANCHEZ-MOLINA I, CHOTCHUANGCHUTCHAVAL T, et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers[J]. Angewandte Chemie International Edition, 2015, 54(28): 8208-8212. doi:10.1002/anie.201503153
    [79]
    LUO P F, XIA W, ZHOU SH W, et al. Solvent engineering for ambient-air-processed, phase-stable CsPbI 3in perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(18): 3603-3608. doi:10.1021/acs.jpclett.6b01576
    [80]
    XUE J J, LEE J W, DAI ZH H, et al. Surface ligand management for stable FAPbI 3perovskite quantum dot solar cells[J]. Joule, 2018, 2(9): 1866-1878. doi:10.1016/j.joule.2018.07.018
    [81]
    FU Y P, REA M T, CHEN J, et al. Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI 3in thin films[J]. Chemistry Of Materials, 2017, 29(19): 8385-8394. doi:10.1021/acs.chemmater.7b02948
    [82]
    WANG Q, ZHENG X P, DENG Y H, et al. Stabilizing the α-phase of CsPbI 3perovskite by sulfobetaine zwitterions in one-step spin-coating films[J]. Joule, 2017, 1(2): 371-382. doi:10.1016/j.joule.2017.07.017
    [83]
    JIANG Y ZH, YUAN J, NI Y X, et al. Reduced-dimensional α-CsPbX 3perovskites for efficient and stable photovoltaics[J]. Joule, 2018, 2(7): 1356-1368. doi:10.1016/j.joule.2018.05.004
    [84]
    RONG Y G, HU Y, MEI A Y, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408): eaat8235. doi:10.1126/science.aat8235
    [85]
    CHEN B, YU ZH SH, LIU K, et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%[J]. Joule, 2019, 3(1): 177-190. doi:10.1016/j.joule.2018.10.003
    [86]
    HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 2015, 6(1): 613-617. doi:10.1039/C4SC03141E
    [87]
    KIM D, JUNG H J, PARK I J, et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites[J]. Science, 2020, 368(6487): 155-160. doi:10.1126/science.aba3433
    [88]
    KE W J, STOUMPOS C C, KANATZIDIS M G. “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells[J]. Advanced Materials, 2019, 31(47): 1803230. doi:10.1002/adma.201803230
    [89]
    TSAI H, NIE W Y, BLANCON J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature, 2016, 536(7616): 312-316. doi:10.1038/nature18306
    [90]
    STOUMPOS C C, MAO L L, MALLIAKAS C D, et al. Structure-band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites[J]. Inorganic Chemistry, 2017, 56(1): 56-73. doi:10.1021/acs.inorgchem.6b02764
    [91]
    CAO D H, STOUMPOS C C, YOKOYAMA T, et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper (CH 3(CH 2) 3NH 3) 2(CH 3NH 3) n−1Sn nI 3n+1perovskites[J]. ACS Energy Letters, 2017, 2(5): 982-990. doi:10.1021/acsenergylett.7b00202
    [92]
    WANG F, JIANG X Y, CHEN H, et al. 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability[J]. Joule, 2018, 2(12): 2732-2743. doi:10.1016/j.joule.2018.09.012
    [93]
    TSAI H, ASADPOUR R, BLANCON J C, et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells[J]. Science, 2018, 360(6384): 67-70. doi:10.1126/science.aap8671
    [94]
    ZHAO J J, DENG Y H, WEI H T, et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells[J]. Science Advances, 2017, 3(11): eaao5616. doi:10.1126/sciadv.aao5616
    [95]
    ROLSTON N, BUSH K A, PRINTZ A D, et al. Engineering stress in perovskite solar cells to improve stability[J]. Advanced Energy Materials, 2018, 8(29): 1802139. doi:10.1002/aenm.201802139
    [96]
    LUO D Y, YANG W Q, WANG ZH P, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J]. Science, 2018, 360(6396): 1442-1446. doi:10.1126/science.aap9282
    [97]
    GROTE C, BERGER R F. Strain tuning of tin-halide and lead-halide perovskites: a first-principles atomic and electronic structure study[J]. The Journal of Physical Chemistry C, 2015, 119(40): 22832-22837. doi:10.1021/acs.jpcc.5b07446
    [98]
    ZHANG L, GENG W, TONG CH J, et al. Strain induced electronic structure variation in methyl-ammonium lead iodide perovskite[J]. Scientific Reports, 2018, 8(1): 7760. doi:10.1038/s41598-018-25772-3
    [99]
    ALHARBI E A, ALYAMANI A Y, KUBICKI D J, et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells[J]. Nature Communications, 2019, 10(1): 3008. doi:10.1038/s41467-019-10985-5
    [100]
    WANG H, ZHU CH, LIU L, et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability[J]. Advanced Materials, 2019, 31(48): 1904408. doi:10.1002/adma.201904408
    [101]
    NAMVAR A, DEHGHANY M, SOHRABPOUR S, et al. Thermal residual stresses in silicon thin film solar cells under operational cyclic thermal loading: A finite element analysis[J]. Solar Energy, 2016, 135: 366-373. doi:10.1016/j.solener.2016.05.058
    [102]
    LEE S M, YEON D H, MOHANTY B C, et al. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells[J]. ACS Applied Materials& Interfaces, 2015, 7(8): 4573-4578.
    [103]
    AHN G H, AMANI M, RASOOL H, et al. Strain-engineered growth of two-dimensional materials[J]. Nature Communications, 2017, 8(1): 608. doi:10.1038/s41467-017-00516-5
    [104]
    MURALI B, YENGEL E, PENG W, et al. Temperature-induced lattice relaxation of perovskite crystal enhances optoelectronic properties and solar cell performance[J]. The Journal of Physical Chemistry Letters, 2017, 8(1): 137-143. doi:10.1021/acs.jpclett.6b02684
    [105]
    ZHU CH, NIU X X, FU Y H, et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics[J]. Nature Communications, 2019, 10(1): 815. doi:10.1038/s41467-019-08507-4
    [106]
    ZHENG Y T, NIU T T, RAN X Q, et al. Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application[J]. Journal of Materials Chemistry A, 2019, 7(23): 13860-13872. doi:10.1039/C9TA03217G
    [107]
    ZHANG J, QIN J J, WANG M SH, et al. Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells[J]. Joule, 2019, 3(12): 3061-3071. doi:10.1016/j.joule.2019.09.020
    [108]
    ZHOU M, FEI CH B, SARMIENTO J S, et al. Manipulating the phase distributions and carrier transfers in hybrid quasi-two-dimensional perovskite films[J]. Solar RRL, 2019, 3(4): 1800359. doi:10.1002/solr.201800359
    [109]
    LIU T F, JIANG Y Y, QIN M CH, et al. Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface modification of hole-transporting layer[J]. Nature Communications, 2019, 10(1): 878. doi:10.1038/s41467-019-08843-5
    [110]
    WEI J, WANG X, SUN X Y, et al. Polymer assisted deposition of high-quality CsPbI 2Br film with enhanced film thickness and stability[J]. Nano Research, 2020, 13(3): 684-690. doi:10.1007/s12274-020-2675-2
    [111]
    QING J, LIU X K, LI M J, et al. Aligned and graded type-II Ruddlesden-Popper perovskite films for efficient solar cells[J]. Advanced Energy Materials, 2018, 8(21): 1800185. doi:10.1002/aenm.201800185
    [112]
    LI M H, YEH H H, CHIANG Y H, et al. Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process[J]. Advanced Materials, 2018, 30(30): 1801401. doi:10.1002/adma.201801401
    [113]
    WU G B, LI X, ZHOU J Y, et al. Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing[J]. Advanced Materials, 2019, 31(42): 1903889. doi:10.1002/adma.201903889
    [114]
    GAO L G, ZHANG F, XIAO CH X, et al. Improving charge transport via intermediate-controlled crystal growth in 2D perovskite solar cells[J]. Advanced Functional Materials, 2019, 29(47): 1901652. doi:10.1002/adfm.201901652
    [115]
    KE W J, MAO L L, STOUMPOS C C, et al. Compositional and solvent engineering in Dion-Jacobson 2D perovskites boosts solar cell efficiency and stability[J]. Advanced Energy Materials, 2019, 9(10): 1803384. doi:10.1002/aenm.201803384
    [116]
    CHEN A Z, SHIU M, MA J H, et al. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance[J]. Nature Communications, 2018, 9(1): 1336. doi:10.1038/s41467-018-03757-0
    [117]
    ZHENG K B, CHEN Y N, SUN Y, et al. Inter-phase charge and energy transfer in Ruddlesden-Popper 2D perovskites: critical role of the spacing cations[J]. Journal of Materials Chemistry A, 2018, 6(15): 6244-6250. doi:10.1039/C8TA01518J
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)/Tables(1)

    Article views(5000) PDF downloads(603) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map