Citation: | WANG Dan, XUE Bin, TU Lang-ping, ZHANG You-lin, SONG Jun, QU Jun-le, KONG Xiang-gui. Enhanced dye-sensitized up-conversion luminescence of neodymium-sensitized multi-shell nanostructures[J].Chinese Optics, 2021, 14(2): 418-430.doi:10.37188/CO.2020-0097 |
[1] |
AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids[J].
Chemical Reviews, 2004, 104(1): 139-174.
doi:10.1021/cr020357g
|
[2] |
LI X X, LI Y Q, WANG X,
et al. Highly sensitive down-conversion optical temperature-measurement material: NaGd(WO
4)
2:Yb
3+/Er
3 +[J].
Chinese Optics, 2019, 12(3): 596-605. (in Chinese)
doi:10.3788/co.20191203.0596
|
[3] |
HE F, GAI SH L, YANG P P,
et al. Luminescence modification and application of the lanthanide upconversion fluorescence materials[J].
Chinese Journal of Luminescence, 2018, 39(1): 92-106. (in Chinese)
doi:10.3788/fgxb20183901.0092
|
[4] |
WANG F, WEN SH H, HE H,
et al. Microscopic inspection and tracking of single upconversion nanoparticles in living cells[J].
Light:
Science&
Applications, 2018, 7(4): e18007.
|
[5] |
CHEN SH, WEITEMIER A Z, ZENG X,
et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics[J].
Science, 2018, 359(6376): 679-684.
|
[6] |
LIU Y J, LU Y Q, YANG X S,
et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J].
Nature, 2017, 543(7644): 229-233.
doi:10.1038/nature21366
|
[7] |
WANG D, XUE B, OHULCHANSKYY T Y,
et al. Inhibiting tumor oxygen metabolism and simultaneously generating oxygen by intelligent upconversion nanotherapeutics for enhanced photodynamic therapy[J].
Biomaterials, 2020, 251: 120088.
doi:10.1016/j.biomaterials.2020.120088
|
[8] |
XUE B, WANG D, ZHANG Y L,
et al. Regulating the color output and simultaneously enhancing the intensity of upconversion nanoparticles via a dye sensitization strategy[J].
Journal of Materials Chemistry C, 2019, 7(28): 8607-8615.
doi:10.1039/C9TC02293G
|
[9] |
TU L P, LIU X M, WU F,
et al. Excitation energy migration dynamics in upconversion nanomaterials[J].
Chemical Society Reviews, 2015, 44(6): 1331-1345.
doi:10.1039/C4CS00168K
|
[10] |
XU W, CHEN X, SONG H W. Manipulation of local electromagnetic field in upconversion luminescence of rare earth ions[J].
Chinese Journal of Luminescence, 2018, 39(1): 1-26. (in Chinese)
doi:10.3788/fgxb20183901.0001
|
[11] |
ZOU W Q, VISSER C, MADURO J A,
et al. Broadband dye-sensitized upconversion of near-infrared light[J].
Nature Photonics, 2012, 6(8): 560-564.
doi:10.1038/nphoton.2012.158
|
[12] |
CHEN G Y, DAMASCO J, QIU H L,
et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal[J].
Nano Letters, 2015, 15(11): 7400-7407.
doi:10.1021/acs.nanolett.5b02830
|
[13] |
WANG D, WANG D, KUZMIN A,
et al. ICG-sensitized NaYF
4:Er nanostructure for theranostics[J].
Advanced Optical Materials, 2018, 6(12): 1701142.
doi:10.1002/adom.201701142
|
[14] |
WANG D, XUE B, KONG X G,
et al. 808 nm driven Nd
3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging[J].
Nanoscale, 2015, 7(1): 190-197.
doi:10.1039/C4NR04953E
|
[15] |
WANG D, XUE B, SONG J,
et al. Compressed energy transfer distance for remarkable enhancement of the luminescence of Nd
3+-sensitized upconversion nanoparticles[J].
Journal of Materials Chemistry C, 2018, 6(24): 6597-6604.
doi:10.1039/C8TC00936H
|
[16] |
ZHONG Y T, TIAN G, GU Z J,
et al. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd
3+-sensitized nanoparticles[J].
Advanced Materials, 2014, 26(18): 2831-2837.
doi:10.1002/adma.201304903
|
[17] |
XUE B, WANG D, TU L P,
et al. Ultrastrong absorption meets ultraweak absorption: unraveling the energy-dissipative routes for dye-sensitized upconversion luminescence[J].
Journal of Physical Chemistry Letters, 2018, 9(16): 4625-4631.
doi:10.1021/acs.jpclett.8b01931
|
[18] |
LI J, LIU L, GUO H Q,
et al. An upconversion fluorescent method for rapid detection of perfluorooctane sulfonate in water samples based on fluorine- fluorine interaction[J].
Chinese Journal of Analytical Chemistry, 2019, 47(3): 380-387. (in Chinese)
|
[19] |
SHAO SH, DING B B, ZHU ZH L,
et al. Preparation of water-soluble up-conversion nano-drug by host-guest chemistry and its application in tumor diagnosis and treatment[J].
Chinese Journal of Analytical Chemistry, 2019, 47(6): 823-831. (in Chinese)
|
[20] |
CUI L, ZHAO M H, ZHANG CH Y. Recent advance in applications of host-guest interaction in biochemical analysis[J].
Chinese Journal of Analytical Chemistry, 2020, 48(7): 817-826. (in Chinese)
|
[21] |
MENG ZH P, WU S L. Manipulating upconversion luminescence of rare earth by photonic crystals[J].
Chinese Journal of Luminescence, 2020, 41(8): 913-925. (in Chinese)
doi:10.37188/fgxb20204108.0913
|
[22] |
SUN J F, YAN D, LIU L. Three-primary-color upconversion in single lanthanide based nanoparticle[J].
Chinese Journal of Luminescence, 2020, 41(1): 1-8. (in Chinese)
doi:10.3788/fgxb20204101.0001
|
[23] |
YU H Y, TU L P, ZHANG Y L,
et al. Quantitative analysis of the surface quenching effect of lanthanide-doped upconversion nanoparticles in solvents[J].
Chinese Optics, 2019, 12(6): 1288-1294. (in Chinese)
doi:10.3788/co.20191206.1288
|
[24] |
FISCHER S, BRONSTEIN N D, SWABECK J K,
et al. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals[J].
Nano Letters, 2016, 16(11): 7241-7247.
doi:10.1021/acs.nanolett.6b03683
|