Volume 14Issue 1
Jan. 2021
Turn off MathJax
Article Contents
CHANG Gai-yan, WANG Yu-heng, CHENG Guang-hua. Writing nanopores on a ZnS crystal with ultrafast Bessel beams[J]. Chinese Optics, 2021, 14(1): 213-225. doi: 10.37188/CO.2020-0101
Citation: CHANG Gai-yan, WANG Yu-heng, CHENG Guang-hua. Writing nanopores on a ZnS crystal with ultrafast Bessel beams[J].Chinese Optics, 2021, 14(1): 213-225.doi:10.37188/CO.2020-0101

Writing nanopores on a ZnS crystal with ultrafast Bessel beams

doi:10.37188/CO.2020-0101
Funds:Supported by National Key Research and Development Program (No. 2018YFB1107401); National Natural Science Foundation of China (No. 61775236)
More Information
  • Author Bio:

    Chang Gaiyan (1992—), female, born in Qingyang City, Gansu Province. She is a master degree candidate of the University of Chinese Academy of Sciences. She is mainly engaged in the research of ultra-fast laser micro-nano machining mechanism and application. E-mail:gaiyanchang@163.com

    Cheng Guanghua (1976—), male, bore in Ankang City, Shaanxi province. He is a professor, doctoral supervisor and the visiting professor of CNRS Hubert Curie Laboratory. He is mainly engaged in the scientific research and talent training in ultrashort pulse laser technique, ultrashort laser-material interaction, femtosecond laser micro-nano machining technique and other fields. E-mail:guanghuacheng@nwpu.edu.cn

  • Corresponding author:guanghuacheng@nwpu.edu.cn
  • Received Date:08 Jun 2020
  • Rev Recd Date:22 Jun 2020
  • Available Online:10 Sep 2020
  • Publish Date:25 Jan 2021
  • Zinc sulfide (ZnS) crystal is one of the important materials used to make the wide-spectrum infrared window. The ultrafast laser technology for manufacturing the nanopores with high aspect ratio provides an important approach to fabricate the photonic devices such as mid-infrared waveguide Fourier transform spectrometer etc. In this paper, a 40-times-demagnification ultrafast laser direct-writing system was built with a 4f system and a Gaussian-Bessel beam generated by a quartz axicon and a Yb:KGW laser source that operated at a wavelength of 1030 nm, a repetition rate of 100 kHz and a pulse width tunable from 223 fs to 20 ps. When the pulse energy was changed from 36 μJ to 63 μJ and the pulse duration was changed from 12.5 ps to 20 ps, the nanopore structure with a diameter of 80~320 nm was successfully written on the ZnS crystal. The surface morphology, diameter and depth of the nanopores were determined by FIB (Focused Ion Beams) ablation and SEM (Scanning Electron Microscopy) imaging. The influence of laser pulse energy and pulse width on the nanopores was studied. The results show that when the pulse width is 20 ps and the pulse energy is 48 µJ, the depth of a nanopore is about 270 µm.

  • loading
  • [1]
    LIN H T, LUO ZH Q, GU T, et al. Mid-infrared integrated photonics on silicon: a perspective[J]. Nanophotonics, 2018, 7(2): 393-420.
    [2]
    AN Q, REN Y Y, JIA Y CH, et al. Mid-infrared waveguides in zinc sulfide crystal[J]. Optical Materials Express, 2013, 3(4): 466-471. doi:10.1364/OME.3.000466
    [3]
    HU J J, MEYER J, RICHARDSON K, et al. Feature issue introduction: mid-IR photonic materials[J]. Optical Materials Express, 2013, 3(9): 1571-1575. doi:10.1364/OME.3.001571
    [4]
    PILE D, HORIUCHI N, WON R, et al. Extending opportunities[J]. Nature Photonics, 2012, 6(7): 407. doi:10.1038/nphoton.2012.164
    [5]
    FU L G, LÜ F X, WANG X W, et al. Defects in CVDZnS[J]. Rare Metals, 2011, 30(4): 387-391. doi:10.1007/s12598-011-0401-7
    [6]
    BHUYAN M K, VELPULA P K, COLOMBIER J P, et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams[J]. Applied Physics Letters, 2014, 104(2): 021107. doi:10.1063/1.4861899
    [7]
    ROSEN J, YARIV A. Synthesis of an arbitrary axial field profile by computer-generated holograms[J]. Optics Letters, 1994, 19(11): 843-845. doi:10.1364/OL.19.000843
    [8]
    STOIAN R, BHUYAN M K, ZHANG G D, et al. Ultrafast Bessel beams: advanced tools for laser materials processing[J]. Advanced Optical Technologies, 2018, 7(3): 165-174. doi:10.1515/aot-2018-0009
    [9]
    BHUYAN M K, COURVOISIER F, LACOURT P A, et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams[J]. Applied Physics Letters, 2010, 97(8): 081102. doi:10.1063/1.3479419
    [10]
    BHUYAN M K, COURVOISIER F, PHING H S, et al. Laser micro- and nanostructuring using femtosecond Bessel beams[J]. The European Physical Journal Special Topics, 2011, 199(1): 101-110. doi:10.1140/epjst/e2011-01506-0
    [11]
    MITRA S, CHANAL M, CLADY R, et al. Millijoule femtosecond micro-Bessel beams for ultra-high aspect ratio machining[J]. Applied Optics, 2015, 54(24): 7358-7365. doi:10.1364/AO.54.007358
    [12]
    ZHANG G D, STOIAN R, CHENG G H, et al. Femtosecond laser Bessel beam welding of transparent to non-transparent materials with large focal-position tolerant zone[J]. Optics Express, 2018, 26(2): 917-926.
    [13]
    MEYER R, FROEHLY L, GIUST R, et al. Extremely high-aspect-ratio ultrafast Bessel beam generation and stealth dicing of multi-millimeter thick glass[J]. Applied Physics Letters, 2019, 114(20): 201105. doi:10.1063/1.5096868
    [14]
    RAPP L, MEYER R, GIUST R, et al. High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams[J]. Scientific Reports, 2016, 6: 34286. doi:10.1038/srep34286
    [15]
    ZHANG F, DUAN J A, ZHOU X F, et al. Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam[J]. Optics Express, 2018, 26(26): 34016-34030. doi:10.1364/OE.26.034016
    [16]
    LI Y P, ZHANG T H, FAN S L, et al. Fabrication of micro hole array on the surface of CVD ZnS by scanning ultrafast pulse laser for antireflection[J]. Optical Materials, 2017, 66: 356-360. doi:10.1016/j.optmat.2017.02.019
    [17]
    RUDENKO A, COLOMBIER J P, ITINA T E. Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass[J]. Physical Chemistry Chemical Physics, 2018, 20(8): 5887-5899. doi:10.1039/C7CP07603G
    [18]
    WANG X L, ZHANG N, ZHAO Y B, et al. Determination of air ionization threshold with femtosecond laser pulses[J]. Acta Physica Sinica, 2008, 57(1): 354-357. (in Chinese)
    [19]
    STOIAN R, BHUYAN M K, RUDENKO A, et al. High-resolution material structuring using ultrafast laser non-diffractive beams[J]. Advances in Physics: X, 2019, 4(1): 1659180. doi:10.1080/23746149.2019.1659180
    [20]
    GLEZER E N, MAZUR E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters, 1997, 71(7): 882-884. doi:10.1063/1.119677
    [21]
    JUODKAZIS S, NISHIMURA K, TANAKA S, et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures[J]. Physical Review Letters, 2006, 96(16): 166101. doi:10.1103/PhysRevLett.96.166101
    [22]
    GAMALY E G, JUODKAZIS S, NISHIMURA K, et al. Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation[J]. Physical Review B, 2006, 73(21): 214101. doi:10.1103/PhysRevB.73.214101
    [23]
    ZHANG G D, CHENG G H, BHUYAN M K, et al. Ultrashort Bessel beam photoinscription of Bragg grating waveguides and their application as temperature sensors[J]. Photonics Research, 2019, 7(7): 806-814. doi:10.1364/PRJ.7.000806
    [24]
    ZHANG G D, CHENG G H, BHUYAN M, et al. Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams[J]. Optics Letters, 2018, 43(9): 2161-2164. doi:10.1364/OL.43.002161
    [25]
    POLESANA P, FRANCO M, COUAIRON A, et al. Filamentation in Kerr media from pulsed Bessel beams[J]. Physical Review A, 2008, 77(4): 043814. doi:10.1103/PhysRevA.77.043814
    [26]
    D'AMICO C, CHENG G H, MAUCLAIR C, et al. Large-mode-area infrared guiding in ultrafast laser written waveguides in Sulfur-based chalcogenide glasses[J]. Optics Express, 2014, 22(11): 13091-13101. doi:10.1364/OE.22.013091
    [27]
    DAM B, RECTOR J, CHANG M F, et al. Laser ablation threshold of YBa 2Cu 3O 6+x[J]. Applied Physics Letters, 1994, 65(12): 1581-1583. doi:10.1063/1.112921
    [28]
    JOGLEKAR A P, LIU H H, MEYHÖFER G, et al. Optics at critical intensity: applications to nanomorphing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16): 5856-5861. doi:10.1073/pnas.0307470101
    [29]
    GAMALY E G, VAILIONIS A, MIZEIKIS V, et al. Warm dense matter at the bench-top: Fs-laser-induced confined micro-explosion[J]. High Energy Density Physics, 2012, 8(1): 13-17. doi:10.1016/j.hedp.2011.10.003
    [30]
    CHENG G H, RUDENKO A, D'AMICO C, et al. Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation[J]. Applied Physics Letters, 2017, 110(26): 261901. doi:10.1063/1.4987139
    [31]
    MARTIN G, BHUYAN M, TROLES J, et al. Near infrared spectro-interferometer using femtosecond laser written GLS embedded waveguides and nano-scatterers[J]. Optics Express, 2017, 25(7): 8386-8397. doi:10.1364/OE.25.008386
    [32]
    DOUGLASS G, ARRIOLA A, HERAS I, et al. Novel concept for visible and near infrared spectro-interferometry: laser-written layered arrayed waveguide gratings[J]. Optics Express, 2018, 26(14): 18470-18479. doi:10.1364/OE.26.018470
    [33]
    SHANKAR R, LEIJSSEN R, BULU I, et al. Mid-infrared photonic crystal cavities in silicon[J]. Optics Express, 2011, 19(6): 5579-5586. doi:10.1364/OE.19.005579
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(1196) PDF downloads(132) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map