Citation: | WANG Yun-kun, LI Yao-long, GAO Yu-nan. Progress on defect and related carrier dynamics in two-dimensional transition metal chalcogenides[J].Chinese Optics, 2021, 14(1): 18-42.doi:10.37188/CO.2020-0106 |
[1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V,
et al. Electric field effect in atomically thin carbon films[J].
Science, 2004, 306(5696): 666-669.
doi:10.1126/science.1102896
|
[2] |
HAN P, WANG X K, ZHANG Y. Time-resolved terahertz spectroscopy studies on 2D van der Waals materials[J].
Advanced Optical Materials, 2020, 8(3): 1900533.
doi:10.1002/adom.201900533
|
[3] |
MOUNET N, GIBERTINI M, SCHWALLER P,
et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds[J].
Nature Nanotechnology, 2018, 13(3): 246-252.
doi:10.1038/s41565-017-0035-5
|
[4] |
CASTELLANOS-GOMEZ A. Why all the fuss about 2D semiconductors?[J].
Nature Photonics, 2016, 10(4): 202-204.
doi:10.1038/nphoton.2016.53
|
[5] |
AJAYAN P, KIM P, BANERJEE K. Two-dimensional van der Waals materials[J].
Physics Today, 2016, 69(9): 38-44.
doi:10.1063/PT.3.3297
|
[6] |
BERKELBACH T C, REICHMAN D R. Optical and excitonic properties of atomically thin transition-metal dichalcogenides[J].
Annual Review of Condensed Matter Physics, 2018, 9(1): 379-396.
doi:10.1146/annurev-conmatphys-033117-054009
|
[7] |
GUO B, XIAO Q L, WANG SH H,
et al. 2D layered materials: synthesis, nonlinear optical properties, and device applications[J].
Laser&
Photonics Reviews, 2019, 13(12): 1800327.
|
[8] |
KANG S, LEE D, KIM J,
et al. 2D semiconducting materials for electronic and optoelectronic applications: potential and challenge[J].
2D Materials, 2020, 7(2): 022003.
doi:10.1088/2053-1583/ab6267
|
[9] |
MUELLER T, MALIC E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors[J].
npj 2D Materials and Applications, 2018, 2(1): 29.
doi:10.1038/s41699-018-0074-2
|
[10] |
TAN CH L, CAO X H, WU X J,
et al. Recent advances in ultrathin two-dimensional nanomaterials[J].
Chemical Reviews, 2017, 117(9): 6225-6331.
doi:10.1021/acs.chemrev.6b00558
|
[11] |
XIA F N, WANG H, XIAO D,
et al. Two-dimensional material nanophotonics[J].
Nature Photonics, 2014, 8(12): 899-907.
doi:10.1038/nphoton.2014.271
|
[12] |
MAK K F, LEE C, HONE J,
et al. Atomically thin MoS
2: A new direct-gap semiconductor[J].
Physical Review Letters, 2010, 105(13): 136805.
doi:10.1103/PhysRevLett.105.136805
|
[13] |
ROLDÁN R, SILVA-GUILLÉN J A, LÓPEZ-SANCHO M P,
et al. Electronic properties of single-layer and multilayer transition metal dichalcogenides
MX
2(M= Mo, W and X= S, Se)[J].
Annalen der Physik, 2014, 526(9-10): 347-357.
doi:10.1002/andp.201400128
|
[14] |
RUPPERT C, ASLAN O B, HEINZ T F. Optical properties and band gap of single- and few-layer MoTe
2crystals[J].
Nano Letters, 2014, 14(11): 6231-6236.
doi:10.1021/nl502557g
|
[15] |
SPLENDIANI A, SUN L, ZHANG Y B,
et al. Emerging photoluminescence in monolayer MoS
2[J].
Nano Letters, 2010, 10(4): 1271-1275.
doi:10.1021/nl903868w
|
[16] |
ZHAO W J, GHORANNEVIS Z, CHU L Q,
et al. Evolution of electronic structure in atomically thin sheets of WS
2and WSe
2[J].
ACS Nano, 2013, 7(1): 791-797.
doi:10.1021/nn305275h
|
[17] |
CHERNIKOV A, BERKELBACH T C, HILL H M,
et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS
2[J].
Physical Review Letters, 2014, 113(7): 076802.
doi:10.1103/PhysRevLett.113.076802
|
[18] |
MAK K F, HE K L, LEE C,
et al. Tightly bound trions in monolayer MoS
2[J].
Nature Materials, 2013, 12(3): 207-211.
doi:10.1038/nmat3505
|
[19] |
PLECHINGER G, NAGLER P, ARORA A,
et al. Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide[J].
Nature Communications, 2016, 7(1): 12715.
doi:10.1038/ncomms12715
|
[20] |
ROSS J S, WU S F, YU H Y,
et al. Electrical control of neutral and charged excitons in a monolayer semiconductor[J].
Nature Communications, 2013, 4(1): 1474.
doi:10.1038/ncomms2498
|
[21] |
STEINHOFF A, FLORIAN M, SINGH A,
et al. Biexciton fine structure in monolayer transition metal dichalcogenides[J].
Nature Physics, 2018, 14(12): 1199-1204.
doi:10.1038/s41567-018-0282-x
|
[22] |
YOU Y M, ZHANG X X, BERKELBACH T C,
et al. Observation of biexcitons in monolayer WSe
2[J].
Nature Physics, 2015, 11(6): 477-481.
doi:10.1038/nphys3324
|
[23] |
LI ZH P, WANG T M, LU ZH G,
et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe
2[J].
Nature Communications, 2018, 9(1): 3719.
doi:10.1038/s41467-018-05863-5
|
[24] |
KUMAR N, NAJMAEI S, CUI Q N,
et al. Second harmonic microscopy of monolayer MoS
2[J].
Physical Review B, 2013, 87(16): 161403.
doi:10.1103/PhysRevB.87.161403
|
[25] |
LI Y L, RAO Y, MAK K F,
et al. Probing symmetry properties of few-layer MoS
2and h-BN by optical second-harmonic generation[J].
Nano Letters, 2013, 13(7): 3329-3333.
doi:10.1021/nl401561r
|
[26] |
MALARD L M, ALENCAR T V, BARBOZA A P M,
et al. Observation of intense second harmonic generation from MoS
2atomic crystals[J].
Physical Review B, 2013, 87(20): 201401.
doi:10.1103/PhysRevB.87.201401
|
[27] |
CAO T, WANG G, HAN W P,
et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J].
Nature Communications, 2012, 3(1): 887.
doi:10.1038/ncomms1882
|
[28] |
MAK K F, HE K L, SHAN J,
et al. Control of valley polarization in monolayer MoS
2by optical helicity[J].
Nature Nanotechnology, 2012, 7(8): 494-498.
doi:10.1038/nnano.2012.96
|
[29] |
ZENG H L, DAI J F, YAO W,
et al. Valley polarization in MoS
2monolayers by optical pumping[J].
Nature Nanotechnology, 2012, 7(8): 490-493.
doi:10.1038/nnano.2012.95
|
[30] |
UBRIG N, PONOMAREV E, ZULTAK J,
et al. Design of van der Waals interfaces for broad-spectrum optoelectronics[J].
Nature Materials, 2020, 19(3): 299-304.
doi:10.1038/s41563-019-0601-3
|
[31] |
RIVERA P, SCHAIBLEY J R, JONES A M,
et al. Observation of long-lived interlayer excitons in monolayer MoSe
2-WSe
2heterostructures[J].
Nature Communications, 2015, 6(1): 6242.
doi:10.1038/ncomms7242
|
[32] |
ALEXEEV E M, RUIZ-TIJERINA D A, DANOVICH M,
et al. Resonantly hybridized excitons in Moire superlattices in van der Waals heterostructures[J].
Nature, 2019, 567(7746): 81-86.
doi:10.1038/s41586-019-0986-9
|
[33] |
JIN CH H, REGAN E C, YAN A M,
et al. Observation of Moire excitons in WSe
2/WS
2heterostructure superlattices[J].
Nature, 2019, 567(7746): 76-80.
doi:10.1038/s41586-019-0976-y
|
[34] |
TRAN K, MOODY G, WU F CH,
et al. Evidence for Moire excitons in van der Waals heterostructures[J].
Nature, 2019, 567(7746): 71-75.
doi:10.1038/s41586-019-0975-z
|
[35] |
RADISAVLJEVIC B, RADENOVIC A, BRIVIO J,
et al. Single-layer MoS
2transistors[J].
Nature Nanotechnology, 2011, 6(3): 147-150.
doi:10.1038/nnano.2010.279
|
[36] |
BAO W ZH, CAI X H, KIM D,
et al. High mobility ambipolar MoS
2field-effect transistors: substrate and dielectric effects[J].
Applied Physics Letters, 2013, 102(4): 042104.
doi:10.1063/1.4789365
|
[37] |
BIE Y Q, GROSSO G, HEUCK M,
et al. A MoTe
2-based light-emitting diode and photodetector for silicon photonic integrated circuits[J].
Nature Nanotechnology, 2017, 12(12): 1124-1129.
doi:10.1038/nnano.2017.209
|
[38] |
XIE Y, ZHANG B, WANG SH X,
et al. Ultrabroadband MoS
2photodetector with spectral response from 445 to 2717 nm[J].
Advanced Materials, 2017, 29(17): 1605972.
doi:10.1002/adma.201605972
|
[39] |
LIU CH H, CLARK G, FRYETT T,
et al. Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode[J].
Nano Letters, 2017, 17(1): 200-205.
doi:10.1021/acs.nanolett.6b03801
|
[40] |
PU J, TAKENOBU T. Monolayer transition metal dichalcogenides as light sources[J].
Advanced Materials, 2018, 30(33): 1707627.
doi:10.1002/adma.201707627
|
[41] |
GE X CH, MINKOV M, FAN SH H,
et al. Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide[J].
npj 2D Materials and Applications, 2019, 3(1): 16.
doi:10.1038/s41699-019-0099-1
|
[42] |
LI Y ZH, ZHANG J X, HUANG D D,
et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity[J].
Nature Nanotechnology, 2017, 12(10): 987-992.
doi:10.1038/nnano.2017.128
|
[43] |
PAIK E Y, ZHANG L, BURG G W,
et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures[J].
Nature, 2019, 576(7785): 80-84.
doi:10.1038/s41586-019-1779-x
|
[44] |
WU S F, BUCKLEY S, SCHAIBLEY J R,
et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J].
Nature, 2015, 520(7545): 69-72.
doi:10.1038/nature14290
|
[45] |
FAVRON A, GAUFRÈS E, FOSSARD F,
et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus[J].
Nature Materials, 2015, 14(8): 826-832.
doi:10.1038/nmat4299
|
[46] |
NACLERIO A E, ZAKHAROV D N, KUMAR J,
et al. Visualizing oxidation mechanisms in few-layered black phosphorus via
in situtransmission electron microscopy[J].
ACS Applied Materials&
Interfaces, 2020, 12(13): 15844-15854.
|
[47] |
NAN H Y, GUO S J, CAI SH,
et al. Producing air-stable inse nanosheet through mild oxygen plasma treatment[J].
Semiconductor Science and Technology, 2018, 33(7): 074002.
doi:10.1088/1361-6641/aac3e6
|
[48] |
HUANG Y, SUTTER E, SHI N N,
et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials[J].
ACS Nano, 2015, 9(11): 10612-10620.
doi:10.1021/acsnano.5b04258
|
[49] |
HUANG Y, PAN Y H, YANG R,
et al. Universal mechanical exfoliation of large-area 2D crystals[J].
Nature Communications, 2020, 11(1): 2453.
doi:10.1038/s41467-020-16266-w
|
[50] |
LIU F, WU W J, BAI Y S,
et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices[J].
Science, 2020, 367(6480): 903-906.
doi:10.1126/science.aba1416
|
[51] |
SHIM J, BAE S H, KONG W,
et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials[J].
Science, 2018, 362(6415): 665-670.
doi:10.1126/science.aat8126
|
[52] |
BERNAL M M, ÁLVAREZ L, GIOVANELLI E,
et al. Luminescent transition metal dichalcogenide nanosheets through one-step liquid phase exfoliation[J].
2D Materials, 2016, 3(3): 035014.
doi:10.1088/2053-1583/3/3/035014
|
[53] |
JAWAID A, NEPAL D, PARK K,
et al. Mechanism for liquid phase exfoliation of MoS
2[J].
Chemistry of Materials, 2016, 28(1): 337-348.
doi:10.1021/acs.chemmater.5b04224
|
[54] |
QI ZH H, HU Y, JIN ZH,
et al. Tuning the liquid-phase exfoliation of arsenic nanosheets by interaction with various solvents[J].
Physical Chemistry Chemical Physics, 2019, 21(23): 12087-12090.
doi:10.1039/C9CP01052A
|
[55] |
SHREE S, GEORGE A, LEHNERT T,
et al. High optical quality of MoS
2monolayers grown by chemical vapor deposition[J].
2D Materials, 2019, 7(1): 015011.
doi:10.1088/2053-1583/ab4f1f
|
[56] |
YU H, LIAO M ZH, ZHAO W J,
et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS
2continuous films[J].
ACS Nano, 2017, 11(12): 12001-12007.
doi:10.1021/acsnano.7b03819
|
[57] |
HU Y, CHEN T, WANG X Q,
et al. Controlled growth and photoconductive properties of hexagonal SnS
2nanoflakes with mesa-shaped atomic steps[J].
Nano Research, 2017, 10(4): 1434-1447.
doi:10.1007/s12274-017-1525-3
|
[58] |
CHEN M W, OVCHINNIKOV D, LAZAR S,
et al. Highly oriented atomically thin ambipolar MoSe
2grown by molecular beam epitaxy[J].
ACS Nano, 2017, 11(6): 6355-6361.
doi:10.1021/acsnano.7b02726
|
[59] |
HU Y, QI ZH H, LU J Y,
et al. Van der Waals epitaxial growth and interfacial passivation of two-dimensional single-crystalline few-layer gray arsenic nanoflakes[J].
Chemistry of Materials, 2019, 31(12): 4524-4535.
doi:10.1021/acs.chemmater.9b01151
|
[60] |
FU D Y, ZHAO X X, ZHANG Y Y,
et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride[J].
Journal of the American Chemical Society, 2017, 139(27): 9392-9400.
doi:10.1021/jacs.7b05131
|
[61] |
NAKANO M, WANG Y, KASHIWABARA Y,
et al. Layer-by-layer epitaxial growth of scalable WSe
2on sapphire by molecular beam epitaxy[J].
Nano Letters, 2017, 17(9): 5595-5599.
doi:10.1021/acs.nanolett.7b02420
|
[62] |
WANG H N, ZHANG CH J, RANA F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS
2[J].
Nano Letters, 2015, 15(1): 339-345.
doi:10.1021/nl503636c
|
[63] |
LI L Q, LIN M F, ZHANG X,
et al. Phonon-suppressed auger scattering of charge carriers in defective two-dimensional transition metal dichalcogenides[J].
Nano Letters, 2019, 19(9): 6078-6086.
doi:10.1021/acs.nanolett.9b02005
|
[64] |
LI Y L, LIU W, WANG Y K,
et al. Ultrafast electron cooling and decay in monolayer WS
2revealed by time- and energy-resolved photoemission electron microscopy[J].
Nano Letters, 2020, 20(5): 3747-3753.
doi:10.1021/acs.nanolett.0c00742
|
[65] |
LIU H, WANG CH, ZUO ZH G,
et al. Direct visualization of exciton transport in defective few-layer WS
2by ultrafast microscopy[J].
Advanced Materials, 2020, 32(2): 1906540.
doi:10.1002/adma.201906540
|
[66] |
LI L SH, CARTER E A. Defect-mediated charge-carrier trapping and nonradiative recombination in WSe
2monolayers[J].
Journal of the American Chemical Society, 2019, 141(26): 10451-10461.
doi:10.1021/jacs.9b04663
|
[67] |
AMANI M, LIEN D H, KIRIYA D,
et al. Near-unity photoluminescence quantum yield in MoS
2[J].
Science, 2015, 350(6264): 1065-1068.
doi:10.1126/science.aad2114
|
[68] |
WU ZH T, LUO ZH ZH, SHEN Y T,
et al. Defects as a factor limiting carrier mobility in WSe
2: a spectroscopic investigation[J].
Nano Research, 2016, 9(12): 3622-3631.
doi:10.1007/s12274-016-1232-5
|
[69] |
TOSUN M, CHAN L, AMANI M,
et al. Air-stable n-doping of WSe
2by anion vacancy formation with mild plasma treatment[J].
ACS Nano, 2016, 10(7): 6853-6860.
doi:10.1021/acsnano.6b02521
|
[70] |
CHEE S S, LEE W J, JO Y R,
et al. Atomic vacancy control and elemental substitution in a monolayer molybdenum disulfide for high performance optoelectronic device arrays[J].
Advanced Functional Materials, 2020, 30(11): 1908147.
doi:10.1002/adfm.201908147
|
[71] |
YANG J, KAWAI H, WONG C P Y,
et al. Electrical doping effect of vacancies on monolayer MoS
2[J].
The Journal of Physical Chemistry C, 2019, 123(5): 2933-2939.
doi:10.1021/acs.jpcc.8b10496
|
[72] |
CHEE S S, LEE J H, LEE K,
et al. Defect-assisted contact property enhancement in a molybdenum disulfide monolayer[J].
ACS Applied Materials&
Interfaces, 2020, 12(3): 4129-4134.
|
[73] |
XIE Y, WU E X, HU R X,
et al. Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment[J].
Nanoscale, 2018, 10(26): 12436-12444.
doi:10.1039/C8NR02668H
|
[74] |
YIN L, HE P, CHENG R,
et al. Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices[J].
Nature Communications, 2019, 10(1): 4133.
doi:10.1038/s41467-019-12200-x
|
[75] |
KOPERSKI M, NOGAJEWSKI K, ARORA A,
et al. Single photon emitters in exfoliated WSe
2structures[J].
Nature Nanotechnology, 2015, 10(6): 503-506.
doi:10.1038/nnano.2015.67
|
[76] |
HE Y M, CLARK G, SCHAIBLEY J R,
et al. Single quantum emitters in monolayer semiconductors[J].
Nature Nanotechnology, 2015, 10(6): 497-502.
doi:10.1038/nnano.2015.75
|
[77] |
SRIVASTAVA A, SIDLER M, ALLAIN A V,
et al. Optically active quantum dots in monolayer WSe
2[J].
Nature Nanotechnology, 2015, 10(6): 491-496.
doi:10.1038/nnano.2015.60
|
[78] |
MOODY G, TRAN K, LU X B,
et al. Microsecond valley lifetime of defect-bound excitons in monolayer WSe
2[J].
Physical Review Letters, 2018, 121(5): 057403.
doi:10.1103/PhysRevLett.121.057403
|
[79] |
REFAELY-ABRAMSON S, QIU D Y, LOUIE S G,
et al. Defect-induced modification of low-lying excitons and valley selectivity in monolayer transition metal dichalcogenides[J].
Physical Review Letters, 2018, 121(16): 167402.
doi:10.1103/PhysRevLett.121.167402
|
[80] |
WANG Q SH, GE SH F, LI X,
et al. Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump–probe spectroscopy[J].
ACS Nano, 2013, 7(12): 11087-11093.
doi:10.1021/nn405419h
|
[81] |
WANG SH SH, ROBERTSON A, WARNER J H. Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides[J].
Chemical Society Reviews, 2018, 47(17): 6764-6794.
doi:10.1039/C8CS00236C
|
[82] |
WU ZH T, NI ZH H. Spectroscopic investigation of defects in two-dimensional materials[J].
Nanophotonics, 2017, 6(6): 1219-1237.
doi:10.1515/nanoph-2016-0151
|
[83] |
JIANG J, XU T, LU J P,
et al. Defect engineering in 2D materials: precise manipulation and improved functionalities[J].
Research, 2019, 2019: 4641739.
|
[84] |
LIN ZH, CARVALHO B R, KAHN E,
et al. Defect engineering of two-dimensional transition metal dichalcogenides[J].
2D Materials, 2016, 3(2): 022002.
doi:10.1088/2053-1583/3/2/022002
|
[85] |
ZHOU W, ZOU X L, NAJMAEI S,
et al. Intrinsic structural defects in monolayer molybdenum disulfide[J].
Nano Letters, 2013, 13(6): 2615-2622.
doi:10.1021/nl4007479
|
[86] |
AMANI M, TAHERI P, ADDOU R,
et al. Recombination kinetics and effects of superacid treatment in sulfur- and selenium-based transition metal dichalcogenides[J].
Nano Letters, 2016, 16(4): 2786-2791.
doi:10.1021/acs.nanolett.6b00536
|
[87] |
HONG J H, HU ZH X, PROBERT M,
et al. Exploring atomic defects in molybdenum disulphide monolayers[J].
Nature Communications, 2015, 6(1): 6293.
doi:10.1038/ncomms7293
|
[88] |
SCHULER B, QIU D Y, REFAELY-ABRAMSON S,
et al. Large spin-orbit splitting of deep in-gap defect states of engineered sulfur vacancies in monolayer WS
2[J].
Physical Review Letters, 2019, 123(7): 076801.
doi:10.1103/PhysRevLett.123.076801
|
[89] |
CHEN P, SHANG J M, YANG Y,
et al. Annealing tunes interlayer coupling and optoelectronic property of bilayer SnSe
2/MoSe
2heterostructures[J].
Applied Surface Science, 2017, 419: 460-464.
doi:10.1016/j.apsusc.2017.04.244
|
[90] |
HE ZH Y, WANG X CH, XU W SH,
et al. Revealing defect-state photoluminescence in monolayer WS
2by cryogenic laser processing[J].
ACS Nano, 2016, 10(6): 5847-5855.
doi:10.1021/acsnano.6b00714
|
[91] |
PETŐ J, OLLÁR T, VANCSÓ P,
et al. Spontaneous doping of the basal plane of MoS
2single layers through oxygen substitution under ambient conditions[J].
Nature Chemistry, 2018, 10(12): 1246-1251.
doi:10.1038/s41557-018-0136-2
|
[92] |
BARJA S, REFAELY-ABRAMSON S, SCHULER B,
et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides[J].
Nature Communications, 2019, 10(1): 3382.
doi:10.1038/s41467-019-11342-2
|
[93] |
SCHULER B, LEE J H, KASTL C,
et al. How substitutional point defects in two-dimensional WS
2induce charge localization, spin-orbit splitting, and strain[J].
ACS Nano, 2019, 13(9): 10520-10534.
doi:10.1021/acsnano.9b04611
|
[94] |
AGHAJANIAN M, SCHULER B, COCHRANE K A,
et al. Resonant and bound states of charged defects in two-dimensional semiconductors[J].
Physical Review B, 2020, 101(8): 081201.
doi:10.1103/PhysRevB.101.081201
|
[95] |
CHEN M, HAM H, WI S,
et al. Multibit data storage states formed in plasma-treated MoS
2transistors[J].
Acs Nano, 2014, 8(4): 4023-4032.
|
[96] |
HU Z H, WU ZH T, HAN CH,
et al. Two-dimensional transition metal dichalcogenides: Interface and defect engineering[J].
Chemical Society Reviews, 2018, 47(9): 3100-3128.
doi:10.1039/C8CS00024G
|
[97] |
ZAN R, RAMASSE Q M, JALIL R,
et al. Control of radiation damage in MoS
2by graphene encapsulation[J].
ACS Nano, 2013, 7(11): 10167-10174.
doi:10.1021/nn4044035
|
[98] |
KOMSA H P, KOTAKOSKI J, KURASCH S,
et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping[J].
Physical Review Letters, 2012, 109(3): 035503.
doi:10.1103/PhysRevLett.109.035503
|
[99] |
WALKER II R C, SHI T, SILVA E C,
et al. Radiation effects on two-dimensional materials[J].
Physica Status Solidi(
A)
|
[100] |
ZHAO G Y, DENG H, TYREE N,
et al. Recent progress on irradiation-induced defect engineering of two-dimensional 2H-MoS
2few layers[J].
Applied Sciences, 2019, 9(4): 678.
doi:10.3390/app9040678
|
[101] |
CHOW P K, JACOBS-GEDRIM R B, GAO J,
et al. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides[J].
ACS Nano, 2015, 9(2): 1520-1527.
doi:10.1021/nn5073495
|
[102] |
TONGAY S, SUH J, ATACA C,
et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged and free excitons[J].
Scientific Reports, 2013, 3: 2657.
doi:10.1038/srep02657
|
[103] |
WU ZH T, ZHAO W W, JIANG J,
et al. Defect activated photoluminescence in WSe
2monolayer[J].
The Journal of Physical Chemistry C, 2017, 121(22): 12294-12299.
doi:10.1021/acs.jpcc.7b03585
|
[104] |
MITTERREITER E, SCHULER B, COCHRANE K A,
et al. Atomistic positioning of defects in helium ion treated single layer MoS
2[J].
Nano Letters, 2020, 20(6): 4437-4444.
|
[105] |
MENG J L, WEI ZH, TANG J,
et al. Employing defected monolayer MoS
2as charge storage materials[J].
Nanotechnology, 2020, 31(23): 235710.
doi:10.1088/1361-6528/ab7c47
|
[106] |
ZHANG SH, WANG CH G, LI M Y,
et al. Defect structure of localized excitons in a WSe
2monolayer[J].
Physical Review Letters, 2017, 119(4): 046101.
doi:10.1103/PhysRevLett.119.046101
|
[107] |
ZHENG Y J, CHEN Y F, HUANG Y L,
et al. Point defects and localized excitons in 2D WSe
2[J].
ACS Nano, 2019, 13(5): 6050-6059.
doi:10.1021/acsnano.9b02316
|
[108] |
LEE Y, YUN S J, KIM Y,
et al. Near-field spectral mapping of individual exciton complexes of monolayer WS
2correlated with local defects and charge population[J].
Nanoscale, 2017, 9(6): 2272-2278.
doi:10.1039/C6NR08813A
|
[109] |
KUMAR R, VERZHBITSKIY I, EDA G. Strong optical absorption and photocarrier relaxation in 2-D semiconductors[J].
IEEE Journal of Quantum Electronics, 2015, 51(10): 0600206.
|
[110] |
GREBEN K, ARORA S, HARATS M G,
et al. Intrinsic and extrinsic defect-related excitons in TMDCs[J].
Nano Letters, 2020, 20(4): 2544-2550.
doi:10.1021/acs.nanolett.9b05323
|
[111] |
JADCZAK J, KUTROWSKA-GIRZYCKA J, KAPUŚCIŃSKI P,
et al. Probing of free and localized excitons and trions in atomically thin WSe
2, WS
2, MoSe
2and MoS
2in photoluminescence and reflectivity experiments[J].
Nanotechnology, 2017, 28(39): 395702.
doi:10.1088/1361-6528/aa87d0
|
[112] |
SHANG J ZH, CONG CH X, SHEN X N,
et al. Revealing electronic nature of broad bound exciton bands in two-dimensional semiconducting WS
2and MoS
2[J].
Physical Review Materials, 2017, 1(7): 074001.
doi:10.1103/PhysRevMaterials.1.074001
|
[113] |
WIERZBOWSKI J, KLEIN J, SIGGER F,
et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit[J].
Scientific Reports, 2017, 7(1): 12383.
doi:10.1038/s41598-017-09739-4
|
[114] |
YU Y, DANG J CH, QIAN CH J,
et al. Many-body effect of mesoscopic localized states in MoS
2monolayer[J].
Physical Review Materials, 2019, 3(5): 051001.
doi:10.1103/PhysRevMaterials.3.051001
|
[115] |
CAROZO V, WANG Y X, FUJISAWA K,
et al. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide[J].
Science Advances, 2017, 3(4): e1602813.
doi:10.1126/sciadv.1602813
|
[116] |
KATO T, KANEKO T. Optical detection of a highly localized impurity state in monolayer tungsten disulfide[J].
ACS Nano, 2014, 8(12): 12777-12785.
doi:10.1021/nn5059858
|
[117] |
MOLAS M R, NOGAJEWSKI K, SLOBODENIUK A O,
et al. The optical response of monolayer, few-layer and bulk tungsten disulfide[J].
Nanoscale, 2017, 9(35): 13128-13141.
doi:10.1039/C7NR04672C
|
[118] |
GORDO V O, BALANTA M A G, GOBATO Y G,
et al. Revealing the nature of low-temperature photoluminescence peaks by laser treatment in van der Waals epitaxially grown WS
2monolayers[J].
Nanoscale, 2018, 10(10): 4807-4815.
doi:10.1039/C8NR00719E
|
[119] |
VENANZI T, ARORA H, ERBE A,
et al. Exciton localization in MoSe
2monolayers induced by adsorbed gas molecules[J].
Applied Physics Letters, 2019, 114(17): 172106.
doi:10.1063/1.5094118
|
[120] |
HE Z Y, ZHAO R, CHEN X F,
et al. Defect engineering in single-layer MoS
2using heavy ion irradiation[J].
ACS Applied Materials&
Interfaces, 2018, 10(49): 42524-42533.
|
[121] |
LEE C, JEONG B G, YUN S J,
et al. Unveiling defect-related raman mode of monolayer WS
2via tip-enhanced resonance raman scattering[J].
ACS Nano, 2018, 12(10): 9982-9990.
doi:10.1021/acsnano.8b04265
|
[122] |
MIGNUZZI S, POLLARD A J, BONINI N,
et al. Effect of disorder on raman scattering of single-layer MoS
2[J].
Physical Review B, 2015, 91(19): 195411.
doi:10.1103/PhysRevB.91.195411
|
[123] |
SHI W, LIN M L, TAN Q H,
et al. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS
2and WSe
2[J].
2D Materials, 2016, 3(2): 025016.
doi:10.1088/2053-1583/3/2/025016
|
[124] |
SHI W, ZHANG X, LI X L,
et al. Phonon confinement effect in two-dimensional nanocrystallites of monolayer MoS
2to probe phonon dispersion trends away from brillouin-zone center[J].
Chinese Physics Letters, 2016, 33(5): 057801.
doi:10.1088/0256-307X/33/5/057801
|
[125] |
ZHANG X, QIAO X F, SHI W,
et al. Phonon and raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material[J].
Chemical Society Reviews, 2015, 44(9): 2757-2785.
doi:10.1039/C4CS00282B
|
[126] |
WANG J Y, VERZHBITSKIY I, EDA G. Electroluminescent devices based on 2D semiconducting transition metal dichalcogenides[J].
Advanced Materials, 2018, 30(47): e1802687.
doi:10.1002/adma.201802687
|
[127] |
PAUR M, MOLINA-MENDOZA A J, BRATSCHITSCH R,
et al. Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors[J].
Nature Communications, 2019, 10(1): 1709.
doi:10.1038/s41467-019-09781-y
|
[128] |
POSPISCHIL A, FURCHI M M, MUELLER T. Solar-energy conversion and light emission in an atomic monolayer p-n diode[J].
Nature Nanotechnology, 2014, 9(4): 257-261.
doi:10.1038/nnano.2014.14
|
[129] |
ROSS J S, RIVERA P, SCHAIBLEY J,
et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction[J].
Nano Letters, 2017, 17(2): 638-643.
doi:10.1021/acs.nanolett.6b03398
|
[130] |
CLARK G, SCHAIBLEY J R, ROSS J,
et al. Single defect light-emitting diode in a van der Waals heterostructure[J].
Nano Letters, 2016, 16(6): 3944-3948.
doi:10.1021/acs.nanolett.6b01580
|
[131] |
SCHWARZ S, KOZIKOV A, WITHERS F,
et al. Electrically pumped single-defect light emitters in WSe
2[J].
2D Materials, 2016, 3(2): 025038.
doi:10.1088/2053-1583/3/2/025038
|
[132] |
PALACIOS-BERRAQUERO C, BARBONE M, KARA D M,
et al. Atomically thin quantum light-emitting diodes[J].
Nature Communications, 2016, 7: 12978.
doi:10.1038/ncomms12978
|
[133] |
SCHULER B, COCHRANE K A, KASTL C,
et al. Electrically driven photon emission from individual atomic defects in monolayer WS
2[J].
Science advances, 2020, 6(38): eabb5988.
doi:10.1126/sciadv.abb5988
|
[134] |
KIM H, LIEN D H, AMANI M,
et al. Highly stable near-unity photoluminescence yield in monolayer MoS
2by fluoropolymer encapsulation and superacid treatment[J].
ACS Nano, 2017, 11(5): 5179-5185.
doi:10.1021/acsnano.7b02521
|
[135] |
GOODMAN A J, WILLARD A P, TISDALE W A. Exciton trapping is responsible for the long apparent lifetime in acid-treated MoS
2[J].
Physical Review B, 2017, 96(12): 121404.
doi:10.1103/PhysRevB.96.121404
|
[136] |
BRETSCHER H M, LI Z J, XIAO J, et al.. The bright side of defects in MoS
2and WS
2and a generalizable chemical treatment protocol for defect passivation[J]. arXiv preprint arXiv, 2020, 2002.03956.
|
[137] |
TANOH A O A, ALEXANDER-WEBBER J, XIAO J,
et al. Enhancing photoluminescence and mobilities in WS
2monolayers with oleic acid ligands[J].
Nano Letters, 2019, 19(9): 6299-6307.
doi:10.1021/acs.nanolett.9b02431
|
[138] |
HAN H V, LU A Y, LU L S,
et al. Photoluminescence enhancement and structure repairing of monolayer MoSe
2by hydrohalic acid treatment[J].
ACS Nano, 2016, 10(1): 1454-1461.
doi:10.1021/acsnano.5b06960
|
[139] |
TANOH A O A, XIAO J, ALEXANDER-WEBBER J, et al.. Giant photoluminescence enhancement in MoSe
2monolayers treated with oleic acid ligands[J]. arXiv preprint arXiv, 2006.04505, 2020.
|
[140] |
KIM H, AHN G H, CHO J,
et al. Synthetic WSe
2monolayers with high photoluminescence quantum yield[J].
Science Advances, 2019, 5(1): eaau4728.
doi:10.1126/sciadv.aau4728
|
[141] |
LIEN D H, UDDIN S Z, YEH M,
et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors[J].
Science, 2019, 364(6439): 468-471.
doi:10.1126/science.aaw8053
|
[142] |
STRIKHA M V, KURCHAK A I, MOROZOVSKA A N. Gate-voltage control of quantum yield in monolayer transition-metal dichalcogenide[J].
Physical Review Applied, 2020, 13(1): 014040.
doi:10.1103/PhysRevApplied.13.014040
|
[143] |
ATALLAH T L, WANG J, BOSCH M,
et al. Electrostatic screening of charged defects in monolayer MoS
2[J].
Journal of Physical Chemistry Letters, 2017, 8(10): 2148-2152.
doi:10.1021/acs.jpclett.7b00710
|
[144] |
NAN H Y, WANG Z L, WANG W H,
et al. Strong photoluminescence enhancement of MoS
2through defect engineering and oxygen bonding[J].
ACS Nano, 2014, 8(6): 5738-5745.
doi:10.1021/nn500532f
|
[145] |
LU J P, CARVALHO A, CHAN X K,
et al. Atomic healing of defects in transition metal dichalcogenides[J].
Nano Letters, 2015, 15(5): 3524-3532.
doi:10.1021/acs.nanolett.5b00952
|
[146] |
OH H M, HAN G H, KIM H,
et al. Photochemical reaction in monolayer MoS
2
viacorrelated photoluminescence, raman spectroscopy, and atomic force microscopy[J].
ACS Nano, 2016, 10(5): 5230-5236.
doi:10.1021/acsnano.6b00895
|
[147] |
ARDEKANI H, YOUNTS R, YU Y L,
et al. Reversible photoluminescence tuning by defect passivation via laser irradiation on aged monolayer MoS
2[J].
ACS Applied Materials&
Interfaces, 2019, 11(41): 38240-38246.
|
[148] |
LEE Y, GHIMIRE G, ROY S,
et al. Impeding exciton–exciton annihilation in monolayer WS
2by laser irradiation[J].
ACS Photonics, 2018, 5(7): 2904-2911.
doi:10.1021/acsphotonics.8b00249
|
[149] |
VENKATAKRISHNAN A, CHUA H, TAN P,
et al. Microsteganography on WS
2monolayers tailored by direct laser painting[J].
ACS Nano, 2017, 11(1): 713-720.
doi:10.1021/acsnano.6b07118
|
[150] |
SIVARAM S V, HANBICKI A T, ROSENBERGER M R,
et al. Spatially selective enhancement of photoluminescence in MoS
2by exciton-mediated adsorption and defect passivation[J].
ACS Applied Materials&
Interfaces, 2019, 11(17): 16147-16155.
|
[151] |
WANG W F, SHU H B, WANG J,
et al. Defect passivation and photoluminescence enhancement of monolayer MoS
2crystals through sodium halide-assisted chemical vapor deposition growth[J].
ACS Applied Materials&
Interfaces, 2020, 12(8): 9563-9571.
|
[152] |
ZHU Y, YI H, HAO Q Y,
et al. Scalable synthesis and defect modulation of large monolayer WS
2via annealing in H
2S atmosphere/thiol treatment to enhance photoluminescence[J].
Applied Surface Science, 2019, 485: 101-107.
doi:10.1016/j.apsusc.2019.04.168
|
[153] |
NIE ZH G, LONG R, SUN L F,
et al. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS
2[J].
ACS Nano, 2014, 8(10): 10931-10940.
doi:10.1021/nn504760x
|
[154] |
CEBALLOS F, CUI Q N, BELLUS M Z,
et al. Exciton formation in monolayer transition metal dichalcogenides[J].
Nanoscale, 2016, 8(22): 11681-11688.
doi:10.1039/C6NR02516A
|
[155] |
SHI H Y, YAN R S, BERTOLAZZI S,
et al. Exciton dynamics in suspended monolayer and few-layer MoS
22D crystals[J].
ACS Nano, 2013, 7(2): 1072-1080.
doi:10.1021/nn303973r
|
[156] |
ZIPFEL J, KULIG M, PEREA-CAUSÍN R,
et al. Exciton diffusion in monolayer semiconductors with suppressed disorder[J].
Physical Review B, 2020, 101(11): 115430.
doi:10.1103/PhysRevB.101.115430
|
[157] |
LIU H, WANG CH, LIU D M,
et al. Neutral and defect-induced exciton annihilation in defective monolayer WS
2[J].
Nanoscale, 2019, 11(16): 7913-7920.
doi:10.1039/C9NR00967A
|
[158] |
KAR S, SU Y, NAIR R R,
et al. Probing photoexcited carriers in a few-layer MoS
2laminate by time-resolved optical pump-terahertz probe spectroscopy[J].
ACS Nano, 2015, 9(12): 12004-12010.
doi:10.1021/acsnano.5b04804
|
[159] |
CHEN K, GHOSH R, MENG X H,
et al. Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe
2[J].
npj 2D Materials and Applications, 2017, 1(1): 15.
doi:10.1038/s41699-017-0019-1
|
[160] |
CHU ZH D, WANG CH Y, QUAN J M,
et al. Unveiling defect-mediated carrier dynamics in monolayer semiconductors by spatiotemporal microwave imaging[J].
Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 13908-13913.
doi:10.1073/pnas.2004106117
|
[161] |
HEIN P, STANGE A, HANFF K,
et al. Momentum-resolved hot electron dynamics at the 2
H-MoS
2surface[J].
Physical Review B, 2016, 94(20): 205406.
doi:10.1103/PhysRevB.94.205406
|
[162] |
KASTL C, KOCH R J, CHEN C T,
et al. Effects of defects on band structure and excitons in WS
2revealed by nanoscale photoemission spectroscopy[J].
ACS Nano, 2019, 13(2): 1284-1291.
|
[163] |
SUN Q, YU H, UENO K,
et al. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy[J].
ACS Nano, 2016, 10(3): 3835-3842.
doi:10.1021/acsnano.6b00715
|
[164] |
YU H, SUN Q, UENO K,
et al. Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy[J].
ACS Nano, 2016, 10(11): 10373-10381.
doi:10.1021/acsnano.6b06206
|
[165] |
ULSTRUP S, ČABO A G, MIWA J A,
et al. Ultrafast band structure control of a two-dimensional heterostructure[J].
ACS Nano, 2016, 10(6): 6315-6322.
doi:10.1021/acsnano.6b02622
|
[166] |
ČABO A G, MIWA J A, GRONBORG S S,
et al. Observation of ultrafast free carrier dynamics in single layer MoS
2[J].
Nano Letters, 2015, 15(9): 5883-5887.
doi:10.1021/acs.nanolett.5b01967
|
[167] |
JULIEN M, MICHAEL K. L. M, CHAKRADHAR S,
et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors[J].
Science, 2020, 370(6521): 1199-1204.
doi:10.1126/science.aba1029
|
[168] |
JOHANNSEN J C, ULSTRUP S, CILENTO F,
et al. Direct view of hot carrier dynamics in graphene[J].
Physical Review Letters, 2013, 111(2): 027403.
doi:10.1103/PhysRevLett.111.027403
|
[169] |
BERTONI R, NICHOLSON C W, WALDECKER L,
et al. Generation and evolution of spin-, valley-, and layer-polarized excited carriers in inversion-symmetric WSe
2[J].
Physical Review Letters, 2016, 117(27): 277201.
doi:10.1103/PhysRevLett.117.277201
|
[170] |
BEYER H, ROHDE G, ČABO A G,
et al. 80% valley polarization of free carriers in singly oriented single-layer WS
2on Au (111)[J].
Physical Review Letters, 2019, 123(23): 236802.
doi:10.1103/PhysRevLett.123.236802
|
[171] |
MAN M K L, MARGIOLAKIS A, DECKOFF-JONES S,
et al. Imaging the motion of electrons across semiconductor heterojunctions[J].
Nature Nanotechnology, 2017, 12(1): 36-40.
doi:10.1038/nnano.2016.183
|
[172] |
LI Y L, SUN Q, ZU SH,
et al. Correlation between near-field enhancement and dephasing time in plasmonic dimers[J].
Physical Review Letters, 2020, 124(16): 163901.
doi:10.1103/PhysRevLett.124.163901
|
[173] |
WANG L, XU C, LI M Y,
et al. Unraveling spatially heterogeneous ultrafast carrier dynamics of single-layer WSe
2by femtosecond time-resolved photoemission electron microscopy[J].
Nano Letters, 2018, 18(8): 5172-5178.
doi:10.1021/acs.nanolett.8b02103
|
[174] |
DOHERTY T A S, WINCHESTER A J, MACPHERSON S,
et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites[J].
Nature, 2020, 580(7803): 360-366.
doi:10.1038/s41586-020-2184-1
|
[175] |
SOBOTA J A, YANG S, ANALYTIS J G,
et al. Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi
2Se
3[J].
Physical Review Letters, 2012, 108(11): 117403.
doi:10.1103/PhysRevLett.108.117403
|
[176] |
GOODMAN A J, LIEN D H, AHN G H,
et al. Substrate-dependent exciton diffusion and annihilation in chemically treated MoS
2and WS
2[J].
The Journal of Physical Chemistry C, 2020, 124(22): 12175-12184.
doi:10.1021/acs.jpcc.0c04000
|
[177] |
KAASBJERG K, MARTINY J H J, LOW T,
et al. Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides[J].
Physical Review B, 2017, 96(24): 241411.
doi:10.1103/PhysRevB.96.241411
|