Citation: | YAN Shan-shan, WANG Shuang-peng, SU Shi-chen. Hybrid plasmonic leaky-mode lasing on subwavelength scale[J].Chinese Optics, 2021, 14(2): 397-408.doi:10.37188/CO.2020-0108 |
[1] |
RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J].
Nature Methods, 2006, 3(10): 793-796.
doi:10.1038/nmeth929
|
[2] |
MAIER S A, KIK P G, ATWATER H A,
et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides[J].
Nature Materials, 2003, 2(4): 229-232.
doi:10.1038/nmat852
|
[3] |
GRAMOTNEV D K, BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J].
Nature Photonics, 2010, 4(2): 83-91.
doi:10.1038/nphoton.2009.282
|
[4] |
BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J].
Nature, 2003, 424(6950): 824-830.
doi:10.1038/nature01937
|
[5] |
BOZHEVOLNYI S I, VOLKOV V S, DEVAUX E,
et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J].
Nature, 2006, 440(7083): 508-511.
doi:10.1038/nature04594
|
[6] |
PARK S, HAHN J W. Plasmonic data storage medium with metallic nano-aperture array embedded in dielectric material[J].
Optics Express, 2009, 17(22): 20203-20210.
doi:10.1364/OE.17.020203
|
[7] |
MANSURIPUR M, ZAKHARIAN A R, LESUFFLEUR A,
et al. Plasmonic nano-structures for optical data storage[J].
Optics Express, 2009, 17(16): 14001-14014.
doi:10.1364/OE.17.014001
|
[8] |
KUBO A, PONTIUS N, PETEK H. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface[J].
Nano Letters, 2007, 7(2): 470-475.
doi:10.1021/nl0627846
|
[9] |
SMOLYANINOV I I, ELLIOTT J, ZAYATS A V,
et al. Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons[J].
Physical Review Letters, 2005, 94(5): 057401.
doi:10.1103/PhysRevLett.94.057401
|
[10] |
NELSON B P, GRIMSRUD T E, LILES M R,
et al. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays[J].
Analytical Chemistry, 2001, 73(1): 1-7.
doi:10.1021/ac0010431
|
[11] |
SMITH E A, THOMAS W D, KIESSLING L L,
et al. Surface plasmon resonance imaging studies of protein-carbohydrate interactions[J].
Journal of the American Chemical Society, 2003, 125(20): 6140-6148.
doi:10.1021/ja034165u
|
[12] |
LEE Y H, JEWELL J L, SCHERER A,
et al. Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes[J].
Electronics Letters, 1989, 25(20): 1377-1378.
doi:10.1049/el:19890921
|
[13] |
LEVI A F J, SLUSHER R E, MCCALL S L,
et al. Room temperature operation of microdisc lasers with submilliamp threshold current[J].
Electronics Letters, 1992, 28(11): 1010-1012.
doi:10.1049/el:19920642
|
[14] |
PAINTER O, LEE R K, SCHERER A,
et al. Two-dimensional photonic band-gap defect mode laser[J].
Science, 1999, 284(5421): 1819-1821.
doi:10.1126/science.284.5421.1819
|
[15] |
MA R M, OULTON R F, SORGER V J,
et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection[J].
Nature Materials, 2011, 10(2): 110-113.
doi:10.1038/nmat2919
|
[16] |
TREDICUCCI A, GMACHL C, CAPASSO F,
et al. Single-mode surface-plasmon laser[J].
Applied Physics Letters, 2000, 76(16): 2164-2166.
doi:10.1063/1.126183
|
[17] |
CHU SH, WANG G P, ZHOU W,
et al. Electrically pumped waveguide lasing from ZnO nanowires[J].
Nature Nanotechnology, 2011, 6(8): 506-510.
doi:10.1038/nnano.2011.97
|
[18] |
JOHNSON J C, CHOI H J, KNUTSEN K P,
et al. Single gallium nitride nanowire lasers[J].
Nature Materials, 2002, 1(2): 106-110.
doi:10.1038/nmat728
|
[19] |
WUESTNER S, HAMM J M, PUSCH A,
et al. Plasmonic leaky-mode lasing in active semiconductor nanowires[J].
Laser&
Photonics Reviews, 2015, 9(2): 256-262.
|
[20] |
NEZHAD M P, SIMIC A, BONDARENKO O,
et al. Room-temperature subwavelength metallo-dielectric lasers[J].
Nature Photonics, 2010, 4(6): 395-399.
doi:10.1038/nphoton.2010.88
|
[21] |
OULTON R F, SORGER V J, ZENTGRAF T,
et al. Plasmon lasers at deep subwavelength scale[J].
Nature, 2009, 461(7264): 629-632.
doi:10.1038/nature08364
|
[22] |
OULTON R F, BARTAL G, PILE D F P,
et al. Confinement and propagation characteristics of subwavelength plasmonic modes[J].
New Journal of Physics, 2008, 10(10): 105018.
doi:10.1088/1367-2630/10/10/105018
|
[23] |
JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J].
Physical Review B, 1972, 6(12): 4370.
doi:10.1103/PhysRevB.6.4370
|
[24] |
NING C Z. Semiconductor nanolasers[J].
Physica Status Solidi(
B)
|
[25] |
LI D B, NING C ZH. Peculiar features of confinement factors in a metal-semiconductor waveguide[J].
Applied Physics Letters, 2010, 96(18): 181109.
doi:10.1063/1.3425896
|
[26] |
LI D B, NING C ZH. Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure[J].
Physical Review B, 2009, 80(15): 153304.
doi:10.1103/PhysRevB.80.153304
|
[27] |
CHANG S H, TAFLOVE A. Finite-difference time-domain model of lasing action in a four-level two-electron atomic system[J].
Optics Express, 2004, 12(16): 3827-3833.
doi:10.1364/OPEX.12.003827
|
[28] |
ZHU ZH M, BROWN T G. Full-vectorial finite-difference analysis of microstructured optical fibers[J].
Optics Express, 2002, 10(17): 853-864.
doi:10.1364/OE.10.000853
|
[29] |
OULTON R F, SORGER V J, GENOV D A,
et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J].
Nature Photonics, 2008, 2(8): 496-500.
doi:10.1038/nphoton.2008.131
|