Citation: | ZHAO Jia-wang, ZHANG Yun-hai, WANG Fa-min, MIAO Xin, SHI Xin. Line-scanning confocal microscopic imaging based on virtual structured modulation[J].Chinese Optics, 2021, 14(2): 431-445.doi:10.37188/CO.2020-0120 |
[1] |
HELL S W. Microscopy and its focal switch[J].
Nature Methods, 2009, 6(1): 24-32.
doi:10.1038/nmeth.1291
|
[2] |
WANG X, LIU H Y, LU X CH,
et al. Cell imaging by holographic lens-free microscopy[J].
Optics and Precision Engineering, 2020, 28(8): 1644-1650. (in Chinese)
|
[3] |
XU B T, YANG X B, LIU J L,
et al. Image correction for high speed scanning confocal laser endomicroscopy[J].
Optics and Precision Engineering, 2020, 28(1): 60-68. (in Chinese)
doi:10.3788/OPE.20202801.0060
|
[4] |
MIAO X, ZHANG Y H, HUANG W. Image brightness adaptive adjustment during skin imaging by reflectance confocal microscopy[J].
Optics and Precision Engineering, 2019, 27(6): 1270-1276. (in Chinese)
doi:10.3788/OPE.20192706.1270
|
[5] |
WANG F M, XIAO Y, ZHAO M M,
et al. 3D resolution improvement in confocal microscopy by mirror refection interference and fluorescence emission difference[J].
Optics and Lasers in Engineering, 2020, 134: 106198.
doi:10.1016/j.optlaseng.2020.106198
|
[6] |
WILSON T, CARLINI A R. Size of the detector in confocal imaging systems[J].
Optics Letters, 1987, 12(4): 227-229.
doi:10.1364/OL.12.000227
|
[7] |
HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J].
Optics Letters, 1994, 19(11): 780-782.
|
[8] |
GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J].
Journal of Microscopy, 2000, 198(2): 82-87.
doi:10.1046/j.1365-2818.2000.00710.x
|
[9] |
SALES T R M, MORRIS G M. Fundamental limits of optical superresolution[J].
Optics Letters, 1997, 22(9): 582-584.
doi:10.1364/OL.22.000582
|
[10] |
RUST M J, BATES M, ZHUANG X W,
et al. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J].
Nature Methods, 2006, 3(10): 793-796.
doi:10.1038/nmeth929
|
[11] |
HESS S T, GIRIRAJAN T P K, MASON M D. Ultra-high resolution imaging by fluorescence Photoactivation localization microscopy[J].
Biophysical Journal, 2006, 91(11): 4258-4272.
doi:10.1529/biophysj.106.091116
|
[12] |
GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J].
Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.
doi:10.1073/pnas.0406877102
|
[13] |
NI H, ZOU L M, GUO Q Y,
et al. Lateral resolution enhancement of confocal microscopy based on structured detection method with spatial light modulator[J].
Optics Express, 2017, 25(3): 2872-2882.
doi:10.1364/OE.25.002872
|
[14] |
LU J, MIN W, CONCHELLO J A,
et al. Super-resolution laser scanning microscopy through spatiotemporal modulation[J].
Nano Letters, 2009, 9(11): 3883-3889.
doi:10.1021/nl902087d
|
[15] |
LU R W, WANG B Q, ZHANG Q X,
et al. Super-resolution scanning laser microscopy through virtually structured detection[J].
Biomedical Optics Express, 2013, 4(9): 1673-1682.
doi:10.1364/BOE.4.001673
|
[16] |
ZHI Y A, LU R W, WANG B Q,
et al. Rapid super-resolution line-scanning microscopy through virtually structured detection[J].
Optics Letters, 2015, 40(8): 1683-1686.
doi:10.1364/OL.40.001683
|
[17] |
WANG B K, ZOU L M, ZHANG S,
et al. Super-resolution confocal microscopy with structured detection[J].
Optics Communications, 2016, 381: 277-281.
doi:10.1016/j.optcom.2016.07.005
|
[18] |
WOLLESCHENSKY R, ZIMMERMANN B, KEMPE M,
et al. High-speed confocal fluorescence imaging with a novel line scanning microscope[J].
Journal of Biomedical Optics, 2006, 11(6): 064011.
doi:10.1117/1.2402110
|
[19] |
GUSTAFSSON M G L, SHAO L, CARLTON P M,
et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J].
Biophysical Journal, 2008, 94(12): 4957-4970.
doi:10.1529/biophysj.107.120345
|