Citation: | WU Ni-shan, XIA Li. Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics[J].Chinese Optics, 2021, 14(2): 245-263.doi:10.37188/CO.2020-0121 |
[1] |
KERSEY A D, DAVIS M A, PATRICK H J,
et al. Fiber grating sensors[J].
Journal of Lightwave Technology, 1997, 15(8): 1442-1463.
doi:10.1109/50.618377
|
[2] |
ZHAO CH L, YANG X F, DEMOKAN M S,
et al. Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating[J].
Journal of Lightwave Technology, 2006, 24(2): 879-883.
doi:10.1109/JLT.2005.862471
|
[3] |
MAJUMDER M, GANGOPADHYAY T K, CHAKRABORTY A K,
et al. Fibre Bragg gratings in structural health monitoring-present status and applications[J].
Sensors and Actuators A:
Physical, 2008, 147(1): 150-164.
doi:10.1016/j.sna.2008.04.008
|
[4] |
DAI Y B, LIU Y J, LENG J S,
et al. A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring[J].
Optics and Lasers in Engineering, 2009, 47(10): 1028-1033.
doi:10.1016/j.optlaseng.2009.05.012
|
[5] |
MIHAILOV S J. Fiber Bragg grating sensors for harsh environments[J].
Sensors, 2012, 12(2): 1898-1918.
doi:10.3390/s120201898
|
[6] |
LAFFONT G, COTILLARD R, FERDINAND P. Multiplexed regenerated fiber Bragg gratings for high-temperature measurement[J].
Measurement Science and Technology, 2013, 24(9): 094010.
doi:10.1088/0957-0233/24/9/094010
|
[7] |
WU W. Research and application of large capacity fiber grating sensor demodulation system[D]. Wuhan: Wuhan University of Technology, 2009: 3-4. (in Chinese).
|
[8] |
LIU SH, HAN X Y, XIONG Y C,
et al. Distributed vibration detection system based on weak fiber Bragg grating array[J].
Chinese Journal of Lasers, 2017, 44(2): 0210001. (in Chinese)
doi:10.3788/CJL201744.0210001
|
[9] |
LI Y, XU M, WANG Q Y,
et al. Strain sensing properties of UV-written fiber grating[J].
Chinese Journal of Luminescence, 2000, 21(1): 61-63. (in Chinese)
doi:10.3321/j.issn:1000-7032.2000.01.014
|
[10] |
ZHANG ZH Y. One-piece flow target type based on fiber Bragg grating sensing technology[J].
Chinese Journal of Luminescence, 2020, 41(2): 217-223. (in Chinese)
|
[11] |
LI L B. Research on capillary-based fiber F-P vibration sensor[D]. Wuhan: Huazhong University of Science and Technology, 2014: 6-7. (in Chinese).
|
[12] |
CAI N. The simulation and demodulation of optical fiber FP sensing structure[D]. Wuhan: Huazhong University of Science and Technology, 2019: 2-5. (in Chinese).
|
[13] |
CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J].
Nature Photonics, 2007, 1(6): 319-330.
doi:10.1038/nphoton.2007.89
|
[14] |
YAO J P. Arbitrary waveform generation[J].
Nature Photonics, 2010, 4(2): 79-80.
doi:10.1038/nphoton.2009.276
|
[15] |
ZHENG D, ZOU X H, PAN W,
et al. Advances of optical fiber sensing interrogation techniques based on microwave photonics[J].
Study on Optical Communications, 2018, 44(6): 21-30. (in Chinese)
|
[16] |
SAUER M, KOBYAKOV A, GEORGE J. Radio over fiber for Picocellular network architectures[J].
Journal of Lightwave Technology, 2007, 25(11): 3301-3320.
doi:10.1109/JLT.2007.906822
|
[17] |
GHELFI P, LAGHEZZA F, SCOTTI F,
et al. A fully photonics-based coherent radar system[J].
Nature, 2014, 507(7492): 341-345.
doi:10.1038/nature13078
|
[18] |
ZOU X H, BAI W L, CHEN W,
et al. Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing[J].
Journal of Lightwave Technology, 2018, 36(19): 4337-4346.
doi:10.1109/JLT.2018.2813663
|
[19] |
RICCHIUTI A L, BARRERA D, SALES S,
et al. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques[J].
Optics Express, 2013, 21(23): 28175-28181.
doi:10.1364/OE.21.028175
|
[20] |
RICCHIUTI A L, HERVÁS J, BARRERA D,
et al. Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor[J].
IEEE Photonics Journal, 2014, 6(6): 5501410.
|
[21] |
XIA L, CHENG R, LI W,
et al. Identical FBG-based quasi-distributed sensing by monitoring the microwave responses[J].
IEEE Photonics Technology Letters, 2015, 27(3): 323-325.
doi:10.1109/LPT.2014.2370650
|
[22] |
WERZINGER S, BERGDOLT S, ENGELBRECHT R,
et al. Quasi-distributed fiber Bragg grating sensing using stepped incoherent optical frequency domain Reflectometry[J].
Journal of Lightwave Technology, 2016, 34(22): 5270-5277.
doi:10.1109/JLT.2016.2614581
|
[23] |
HERVÁS J, BARRERA D, MADRIGAL J,
et al. Microwave photonics filtering interrogation technique under coherent regime for hot spot detection on a weak FBGs array[J].
Journal of Lightwave Technology, 2018, 36(4): 1039-1045.
doi:10.1109/JLT.2018.2793161
|
[24] |
CHENG R, XIA L, SIMA C T,
et al. Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis[J].
Optics Express, 2016, 24(3): 2466-2484.
doi:10.1364/OE.24.002466
|
[25] |
HERVÁS J, FERNÁNDEZ-POUSA C R, BARRERA D,
et al. An interrogation technique of FBG cascade sensors using wavelength to radio-frequency delay mapping[J].
Journal of Lightwave Technology, 2015, 33(11): 2222-2227.
doi:10.1109/JLT.2015.2409318
|
[26] |
ZHENG D, MADRIGAL J, BARRERA D,
et al. Microwave photonic filtering for interrogating FBG-based multicore fiber curvature sensor[J].
IEEE Photonics Technology Letters, 2017, 29(20): 1707-1710.
doi:10.1109/LPT.2017.2742579
|
[27] |
WU N SH, XIA L, SONG Y M,
et al. Simultaneous differential interrogation for Multiple FBGs based on Crossed Sagnac loops and microwave network[J].
Journal of Lightwave Technology, 2019, 37(23): 5953-5960.
doi:10.1109/JLT.2019.2944401
|
[28] |
ZHOU L. Research on high-speed demodulation of weak grating array based on microwave photonics and chromatic dispersion[D]. Wuhan: Wuhan University of Technology, 2018: 16-18. (in Chinese).
|
[29] |
DONG X Y, SHAO L Y, FU H Y,
et al. Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement[J].
Optics Letters, 2008, 33(5): 482-484.
doi:10.1364/OL.33.000482
|
[30] |
CHENG R, XIA L, YAN J,
et al. Radio frequency FBG-based interferometer for remote adaptive strain monitoring[J].
IEEE Photonics Technology Letters, 2015, 27(15): 1577-1580.
doi:10.1109/LPT.2015.2406112
|
[31] |
WANG Y P, ZHANG J J, COUTINHO O,
et al. Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform[J].
Optics Letters, 2015, 40(21): 4923-4926.
doi:10.1364/OL.40.004923
|
[32] |
ZHOU L, LI ZH Y, XIANG N,
et al. High-speed demodulation of weak fiber Bragg gratings based on microwave photonics and chromatic dispersion[J].
Optics Letters, 2018, 43(11): 2430-2433.
doi:10.1364/OL.43.002430
|
[33] |
LIANG X, XIANG N, LI ZH Y,
et al. Precision dynamic sensing with ultra-weak fiber Bragg grating arrays by wavelength to frequency transform[J].
Journal of Lightwave Technology, 2019, 37(14): 3526-3531.
doi:10.1109/JLT.2019.2917602
|
[34] |
WANG J Q, LI ZH Y, YANG Q,
et al. Interrogation of a large-capacity densely spaced fiber Bragg grating array using chaos-based incoherent-optical frequency domain reflectometry[J].
Optics Letters, 2019, 44(21): 5202-5205.
doi:10.1364/OL.44.005202
|
[35] |
YANG Q, WANG J Q, FU X L,
et al.. High-spatial resolution demodulation of weak FBGs based on incoherent optical frequency domain Reflectometry using a chaotic laser[C].
Proceedings of 2019 IEEE International Instrumentation and Measurement Technology
Conference(
I2MTC), IEEE, 2019: 994-998.
|
[36] |
YANG Y G, WANG M G, SHEN Y,
et al. Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating[J].
IEEE Photonics Journal, 2018, 10(1): 6800309.
|
[37] |
ZHANG N H, WU B L, WANG M G,
et al. High-sensitivity sensing for relative humidity and temperature based on an optoelectronic oscillator using a polyvinyl alcohol-fiber Bragg grating-Fabry Perot filter[J].
IEEE Access, 2019, 7: 148756-148763.
doi:10.1109/ACCESS.2019.2946991
|
[38] |
XU Z W, SHU X W, FU H Y. Fiber Bragg grating sensor interrogation system based on an optoelectronic oscillator loop[J].
Optics Express, 2019, 27(16): 23274-23281.
doi:10.1364/OE.27.023274
|
[39] |
WANG W X, LIU Y, DU X W,
et al. Ultra-stable and real-time Demultiplexing system of strong fiber Bragg grating sensors based on low-frequency optoelectronic oscillator[J].
Journal of Lightwave Technology, 2020, 38(4): 981-988.
doi:10.1109/JLT.2019.2949682
|
[40] |
HUANG J, HUA L, LAN X W,
et al. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing[J].
Optics Express, 2013, 21(15): 18152-18159.
doi:10.1364/OE.21.018152
|
[41] |
HUANG J, LAN X W, LUO M,
et al. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry[J].
Optics Express, 2014, 22(15): 18757-18769.
doi:10.1364/OE.22.018757
|
[42] |
HUA L W, SONG Y, HUANG J,
et al. Femtosecond laser fabricated multimode fiber sensors interrogated by optical-carrier-based microwave interferometry technique for distributed strain sensing[J].
Proceedings of SPIE, 2016, 9754: 97540V.
|
[43] |
BENÍTEZ J, BOLEA M, MORA J. Demonstration of multiplexed sensor system combining low coherence interferometry and microwave photonics[J].
Optics Express, 2017, 25(11): 12182-12187.
doi:10.1364/OE.25.012182
|
[44] |
HUA L W, SONG Y, CHENG B K,
et al. Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry[J].
Optics Express, 2017, 25(25): 31362-31376.
doi:10.1364/OE.25.031362
|
[45] |
HUA L W. Microwave photonics for distributed sensing[D]. Clemson: Clemson University, 2017: 88-97.
|
[46] |
COELHO L C C, DE ALMEIDA J M M M, MOAYYED H,
et al. Multiplexing of surface Plasmon resonance sensing devices on etched single-mode fiber[J].
Journal of Lightwave Technology, 2015, 33(2): 432-438.
doi:10.1109/JLT.2014.2386141
|
[47] |
LIU Q, JING ZH G, LIU Y Y,
et al. Multiplexing fiber-optic Fabry-Perot acoustic sensors using self-calibrating wavelength shifting interferometry[J].
Optics Express, 2019, 27(26): 38191-38203.
doi:10.1364/OE.381197
|