Citation: | LI Jin-hui, MA Hui, YANG Chen-ye, ZHANG Xiao-qing, LUO Xin-yu, WANG Chi. Research progress of the laser vibration measurement techniques for acoustic-to-seismic coupling landmine detection[J].Chinese Optics, 2021, 14(3): 487-502.doi:10.37188/CO.2020-0134 |
[1] |
ZUCCHETTI M, KHODOR M, MAKKI I,
et al.. Landmines. Crisis, legacy, international and local action[C].
Proceedings of the 2017 First International Conference on Landmine:
Detection,
Clearance and Legislations, LDCL, 2017.
|
[2] |
WU ZH Q, ZHANG Y L, WANG CH,
et al. 3D characteristic diagram of acoustically induced surface vibration with different landmines buried[J].
Transactions of Tianjin University, 2016, 22(4): 367-373.
doi:10.1007/s12209-016-2759-y
|
[3] |
BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J].
The Journal of the Acoustical Society of America, 1956, 28(2): 168-178.
doi:10.1121/1.1908239
|
[4] |
BIOT M A. Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range[J].
The Journal of the Acoustical Society of America, 1956, 28(2): 179-191.
doi:10.1121/1.1908241
|
[5] |
BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J].
Journal of Applied Physics, 1962, 33(4): 1482-1498.
doi:10.1063/1.1728759
|
[6] |
LI H Y, WANG Y J, CHANG H W,
et al. Acoustic impedance and its application in seismo-acoustic landmines detection models[J].
Journal of Coastal Research, 2020, 99(SI): 92-98.
|
[7] |
SABATIER J M, KORMAN M S, XIANG N. Linear and nonlinear acoustic velocity profiles over buried land mines[J].
Proceedings of SPIE, 2002, 4742: 695-700.
doi:10.1117/12.479141
|
[8] |
DONSKOY D. Nonlinear seismo-acoustic landmine detection[J].
The Journal of the Acoustical Society of America, 2008, 123(5): 3042-3043.
|
[9] |
YU S H, GANDHE A, WITTEN T R,
et al. Physically based method for automatic mine detection using acoustic data: a transmission zero approach[J].
Proceedings of SPIE, 2002, 4742: 701-708.
doi:10.1117/12.479143
|
[10] |
ZAGRAI A, DONSKOY D, EKIMOV A. Structural vibrations of buried land mines[J].
The Journal of the Acoustical Society of America, 2005, 118(6): 3619-3628.
doi:10.1121/1.2108754
|
[11] |
WANG CH, LIU ZH G, LI X F,
et al. Technology for acoustic landmine detection based on relative acoustic-to-seismic coupling ratio[J].
Journal of Tianjin University, 2008, 41(6): 745-750. (in Chinese)
|
[12] |
WANG CH, YU Y J, LI X F,
et al. Analysis of earth-mine resonance model[J].
Acta Physica Sinica, 2010, 59(9): 6319-6325. (in Chinese)
doi:10.7498/aps.59.6319
|
[13] |
WANG CH, YU Y J, LI X F. An acoustic-to-seismic coupling based landmines detection system in lab-scale experimental environment[J].
Journal of Tianjin University, 2011, 44(1): 79-84. (in Chinese)
|
[14] |
WANG CH, ZHOU Y Q, SHEN G W,
et al. Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection[J].
Chinese Physics B, 2013, 22(12): 124601.
doi:10.1088/1674-1056/22/12/124601
|
[15] |
DING W, WU W W, WANG CH,
et al. Propagation characteristics of seismic waves in shallow soil with the unsaturated three-phase poroelastic model[J].
Acta Physica Sinica, 2014, 63(22): 224301. (in Chinese)
doi:10.7498/aps.63.224301
|
[16] |
SONG Z Y, ZHANG Y L, WANG CH,
et al. Experimental measurement of acoustically induced surface vibration with different soil conditions[J].
Advances in Manufacturing, 2016, 4(3): 278-285.
doi:10.1007/s40436-016-0153-6
|
[17] |
WU ZH Q, MA H, WANG CH,
et al. Numerical analysis of a sensorized prodder for landmine detection by using its vibrational characteristics[J].
Applied Sciences, 2019, 9(4): 744.
doi:10.3390/app9040744
|
[18] |
ZHANG Q K, ZHONG SH C, LIN J W,
et al. High-performance optical coherence velocimeter: theory and applications[J].
Optics Express, 2019, 27(2): 965-979.
doi:10.1364/OE.27.000965
|
[19] |
LIBBEY B, PEREA J. Doppler-vibrometer landmine-detection system operated from a moving vehicle[J].
Proceedings of SPIE, 2019, 11012: 110120W.
|
[20] |
MARTIN J S, LARSON G D, SCOTT JR W R. An investigation of surface-contacting sensors for the seismic detection of buried landmines[J].
The Journal of the Acoustical Society of America, 2006, 120(5): 2676-2685.
doi:10.1121/1.2345911
|
[21] |
BULLETTI A, BORGIOLI G, CALZOLAI M,
et al. Acoustoseismic method for buried-object detection by means of surface-acceleration measurements and audio facilities[J].
IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3134-3138.
doi:10.1109/TGRS.2010.2044888
|
[22] |
LARSON G D, MARTIN J S, SCOTT JR W R,
et al. Detection of buried landmines using seismic waves and microphones[J].
Proceedings of SPIE, 2005, 5794: 655-664.
doi:10.1117/12.603861
|
[23] |
LARSON G D, MARTIN J S, SCOTT JR W R. Investigation of microphones as near-ground sensors for seismic detection of buried landmines[J].
The Journal of the Acoustical Society of America, 2007, 122(1): 253-258.
doi:10.1121/1.2743155
|
[24] |
SCOTT W R, MARTIN J S, LARISON G D. Experimental model for a seismic landmine detection system[J].
IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6): 1155-1164.
doi:10.1109/36.927432
|
[25] |
LEE S H, SCOTT JR W R. A focused radar antenna for use in seismic mine detection systems[J].
Radio Science, 2004, 39(4): RS4S01.
|
[26] |
PETCULESCU A G, SABATIER J M. Doppler ultrasound techniques for landmine detection[J].
Proceedings of SPIE, 2004, 5414: 30-34.
|
[27] |
RAJESH K R, MURALI R, MOHANACHANDRAN R. Advanced acousto-ultrasonic landmine detector for humanitarian mine sweeping[C].
Proceedings of 2011 IEEE Global Humanitarian Technology Conference, IEEE, 2011.
|
[28] |
BÉRES M, PARIPÁS B. Measurements of vibration by laser doppler method in the course of drilling[C].
Proceedings of the 2nd ed Vehicle and Automotive Engineering, Springer, 2018.
|
[29] |
LV T, HAN X Y, WU SH S,
et al. The effect of speckles noise on the laser Doppler vibrometry for remote speech detection[J].
Optics Communications, 2019, 440: 117-125.
doi:10.1016/j.optcom.2019.02.014
|
[30] |
XIANG N, SABATIER J M. An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling[J].
The Journal of the Acoustical Society of America, 2003, 113(3): 1333-1341.
doi:10.1121/1.1543554
|
[31] |
SABATIER J M, XIANG N. An investigation of acoustic-to-seismic coupling to detect buried antitank landmines[J].
IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6): 1146-1154.
doi:10.1109/36.927429
|
[32] |
XIANG N, SABATIER J M. Acoustic-to-seismic landmine detection using a continuously scanning laser Doppler vibrometer[J].
Proceedings of SPIE, 2003, 5089: 591-595.
doi:10.1117/12.487535
|
[33] |
LAL A K, ZHANG H SH, ARANCHUK V,
et al. Multiple-beam LDV system for buried landmine detection[J].
Proceedings of SPIE, 2003, 5089: 579-590.
doi:10.1117/12.487154
|
[34] |
ARANCHUK V, LAL A K, ZHANG H SH,
et al. Acoustic sensor for landmine detection using a continuously scanning multibeam LDV[J].
Proceedings of SPIE, 2004, 5415: 61-69.
doi:10.1117/12.541562
|
[35] |
ARANCHUK V, SABATIER J M, LAL A K,
et al. Multi-beam laser Doppler vibrometry for acoustic landmine detection using airborne and mechanically coupled vibration[J].
Proceedings of SPIE, 2005, 5794: 624-631.
doi:10.1117/12.603512
|
[36] |
LAL A, ARANCHUK S, DOUSHKINA V,
et al. Advanced LDV instruments for buried landmine detection[J].
Proceedings of SPIE, 2006, 6217: 621715.
doi:10.1117/12.668927
|
[37] |
ARANCHUK V, SABATIER J M, BURGETT R D,
et al. Fast acoustic landmine detection using multiple beam laser Doppler vibrometry[J].
The Journal of the Acoustical Society of America, 2008, 123(5): 3043.
|
[38] |
BURGETT R, SABATIER J M, ARANCHUK V. Carrier tracking and tunable passband filters for TDM-LDV mine detection[J].
Proceedings of SPIE, 2010, 7664: 76641X.
doi:10.1117/12.853105
|
[39] |
BURGETT R, ARANCHUK V, ARANCHUK I. Experimental investigation of buried landmine detection using time division multiplexing of multibeam laser Doppler vibrometer channels[J].
Proceedings of SPIE, 2012, 8357: 83570H.
|
[40] |
PADGHAN P P, PANDE V D, INGLE P U,
et al. Measurement of nanoscale surface roughness using electronic speckle pattern interferometer[J].
AIP Conference Proceedings, 2019, 2100(1): 020062.
|
[41] |
SCHWARZ A, SHEMER A, OZANA N,
et al.. Laser vibrometer interferometry for speckle patterns tracking systems[C].
Proceedings of 2017 Conference on Lasers and Electro-
Optics, IEEE, 2017.
|
[42] |
RITTER K, UNGLAUB J, THIELE K. Untersuchung der mikroschädigung in baustahl mit ESPI[J].
Bautechnik, 2020, 97(3): 180-187.
doi:10.1002/bate.201800006
|
[43] |
PAGLIARULO V, FERRARO P. New applications of electronic speckle pattern interferometry in novel materials and structures[J].
Proceedings of SPIE, 2019, 11059: 1105910.
|
[44] |
SABATIER J M, ARANCHUK V, ALBERTS II W C. Rapid high-spatial-resolution imaging of buried landmines using ESPI[J].
Proceedings of SPIE, 2004, 5415: 14-20.
doi:10.1117/12.540517
|
[45] |
WANG X F, SONG X M, TAN R X,
et al. Micro-vibration measurement based on current modulation and secondary feedback self-mixing interference technology[J].
Optical Review, 2019, 26(2): 241-246.
doi:10.1007/s10043-018-00489-w
|
[46] |
ZHANG Z H, SUN L Q, LI CH W,
et al. Laser self-mixing interferometry for micro-vibration measurement based on inverse Hilbert transform[J].
Optical Review, 2020, 27(1): 90-97.
doi:10.1007/s10043-019-00568-6
|
[47] |
HE G, GORDENKER R, WOO J K,
et al.. Laser self-mixing interferometry for precision displacement measurement in resonant gyroscopes[C].
Proceedings of 2019 IEEE International Symposium on Inertial Sensors and Systems, IEEE, 2019.
|
[48] |
ZHANG Z H, JIANG CH L, SHEN L Q, el al. Vibration measurement based on the local maximum detection algorithm for laser self-mixing interferometry[J].
IEEE Access, 2020, 8: 63462-63469.
doi:10.1109/ACCESS.2020.2984282
|
[49] |
WANG CH, DUAN N Y, WU ZH Q,
et al. Method for detecting multi-modal vibration characteristics of landmines[J].
Instrumentation, 2018, 5(4): 39-45.
|
[50] |
WU ZH Q, DUAN N Y, WANG CH,
et al. Experimental study on acoustic-to-seismic landmine detection based on laser self-mixing interferometer[J].
Proceedings of SPIE, 2018, 108271: 108271W.
|
[51] |
JING CH, LIU ZH L, GUO CH L,
el al.. Vibration measurement with electrical speckle shearing pattern interferometry[C].
Proceedings of 2016 International Conference on Identification,
Information and Knowledge in the Internet of Things, IEEE, 2016.
|
[52] |
MA Y H, JIANG H Y, DAI M L,
et al. Cantilevered plate vibration analysis based on electronic speckle pattern interferometry and digital shearing speckle pattern interferometry[J].
Acta Optica Sinica, 2019, 39(4): 0403001. (in Chinese)
doi:10.3788/AOS201939.0403001
|
[53] |
WANG Y H, LYU Y B, GAO X Y,
et al. Research progress in shearography and its applications[J].
Chinese Optics, 2017, 10(3): 300-309. (in Chinese)
doi:10.3788/co.20171003.0300
|
[54] |
ASEMANI H, SOLTANI N. Application of electronic speckle pattern shearing interferometry with high-speed camera in vibration analysis of piezoelectric transducer[J].
International Journal of Applied Mechanics, 2019, 11(6): 1950056.
doi:10.1142/S175882511950056X
|