Citation: | TONG Yi-cheng, TONG Xue-dong, ZHANG Kai, XIAO Da, RONG Yu-hang, ZHOU Yu-di, LIU Chong, LIU Dong. Polarization lidar gain ratio calibration method: a comparison[J].Chinese Optics, 2021, 14(3): 685-703.doi:10.37188/CO.2020-0136 |
[1] |
SCHOTLAND R M, SASSEN K, STONE R. Observations by lidar of linear depolarization ratios for hydrometeors[J].
Journal of Applied Meteorology, 1971, 10(5): 1011-1017.
doi:10.1175/1520-0450(1971)010<1011:OBLOLD>2.0.CO;2
|
[2] |
SASSEN K. Polarization in lidar: a review[J].
Proceedings of SPIE, 2003, 5158: 151-160.
doi:10.1117/12.507006
|
[3] |
LIU D, YANG Y Y, ZHANG Y P,
et al. Pattern recognition model for aerosol classification with atmospheric backscatter lidars: principles and simulations[J].
Journal of Applied Remote Sensing, 2015, 9(1): 096006.
doi:10.1117/1.JRS.9.096006
|
[4] |
CHENG ZH T, LIU D, LUO J,
et al. Tolerance evaluation for anti-reflection coatings in field-widened michelson spectroscopic filter[J].
Chinese Journal of Lasers, 2015, 42(8): 0813002. (in Chinese)
doi:10.3788/CJL201542.0813002
|
[5] |
QIU J W, XIA H Y, SHANGGUAN M J,
et al. Micro-pulse polarization lidar at 1.5 μm using a single superconducting nanowire single-photon detector[J].
Optics Letters, 2017, 42(21): 4454-4457.
doi:10.1364/OL.42.004454
|
[6] |
GOBBI G P, BARNABA F, GIORGI R,
et al. Altitude-resolved properties of a Saharan dust event over the Mediterranean[J].
Atmospheric Environment, 2000, 34(29-30): 5119-5127.
doi:10.1016/S1352-2310(00)00194-1
|
[7] |
DIONISI D, BARNABA F, COSTABILE F,
et al. Retrieval of aerosol parameters from continuous h24 lidar-ceilometer measurements[J].
EPJ Web of Conferences, 2016, 119(4): 23004.
|
[8] |
BINIETOGLOU I, AMODEO A, D’AMICO G,
et al. Examination of possible synergy between lidar and ceilometer for the monitoring of atmospheric aerosols[J].
Proceedings of SPIE, 2011, 8182: 818209.
doi:10.1117/12.897530
|
[9] |
CAIRO F, DI DONFRANCESCO G, ADRIANI A,
et al. Comparison of various linear depolarization parameters measured by lidar[J].
Applied Optics, 1999, 38(21): 4425-4432.
doi:10.1364/AO.38.004425
|
[10] |
LUO J, LIU D, XU P T,
et al. High-precision polarizing beam splitting system based on polarizing beam splitter[J].
Chinese Journal of Lasers, 2016, 43(12): 1210001. (in Chinese)
doi:10.3788/CJL201643.1210001
|
[11] |
BEHRENDT A, NAKAMURA T. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature[J].
Optics Express, 2002, 10(16): 805-817.
doi:10.1364/OE.10.000805
|
[12] |
YOUNG A T. Rayleigh scattering[J].
Physics Today, 1982, 35(1): 42-48.
doi:10.1063/1.2890003
|
[13] |
SHE C Y. Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars[J].
Applied Optics, 2001, 40(27): 4875-4884.
doi:10.1364/AO.40.004875
|
[14] |
LUO J, LIU D, HUANG Z H,
et al. Polarization properties of receiving telescopes in atmospheric remote sensing polarization lidars[J].
Applied Optics, 2017, 56(24): 6837-6845.
doi:10.1364/AO.56.006837
|
[15] |
FREUDENTHALER V, ESSELBORN M, WIEGNER M,
et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006[J].
Tellus B:
Chemical and Physical Meteorology, 2009, 61(1): 165-179.
doi:10.1111/j.1600-0889.2008.00396.x
|
[16] |
SASSEN K, BENSON S. A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: microphysical properties derived from lidar depolarization[J].
Journal of the Atmospheric Sciences, 2001, 58(15): 2103-2112.
|
[17] |
LUO J, LIU D, BI L,
et al. Rotating a half-wave plate by 45°: an ideal calibration method for the gain ratio in polarization lidars[J].
Optics Communications, 2018, 407: 361-366.
doi:10.1016/j.optcom.2017.09.065
|
[18] |
ALVAREZ J M, VAUGHAN M A, HOSTETLER C A,
et al. Calibration technique for polarization-sensitive lidars[J].
Journal of Atmospheric and Oceanic Technology, 2006, 23(5): 683-699.
doi:10.1175/JTECH1872.1
|
[19] |
MATTIS I, TESCHE M, GREIN M,
et al. Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme[J].
Applied Optics, 2009, 48(14): 2742-2751.
doi:10.1364/AO.48.002742
|
[20] |
HUNT W H, WINKER D M, VAUGHAN M A,
et al.
CALIPSOlidar description and performance assessment[J].
Journal of Atmospheric and Oceanic Technology, 2008, 26(7): 1214-1228.
|
[21] |
QU Y. Technical status and development tendency of atmosphere optical remote and monitoring[J].
Chinese Optics, 2013, 6(6): 834-840. (in Chinese)
|
[22] |
YANG Z J, CHEN F, LI CH,
et al. Transient effect of dead time of photon-counting in micro-pulse lidar[J].
Optics and Precision Engineering, 2015, 23(2): 408-414. (in Chinese)
doi:10.3788/OPE.20152302.0408
|
[23] |
DUAN L L, LIU D, ZHANG Y P,
et al. Lidar data gluing technology based on hybrid intelligent algorithm[J].
Acta Optica Sinica, 2017, 37(6): 0601002. (in Chinese)
doi:10.3788/AOS201737.0601002
|
[24] |
LUO J, LIU D, WANG B Y,
et al. Effects of a nonideal half-wave plate on the gain ratio calibration measurements in polarization lidars[J].
Applied Optics, 2017, 56(29): 8100-8108.
doi:10.1364/AO.56.008100
|
[25] |
D'AMICO G, AMODEO A, MATTIS I,
et al. EARLINET single calculus chain - technical - Part 1: pre-processing of raw lidar data[J].
Atmospheric Measurement Techniques, 2016, 9(2): 491-507.
doi:10.5194/amt-9-491-2016
|
[26] |
LIU Q, LIU CH, ZHU X L,
et al. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J].
Chinese Optics, 2020, 13(1): 148-155. (in Chinese)
doi:10.3788/co.20201301.0148
|
[27] |
LU X Y, LI X B, QIN W B,
et al. Retrieval of horizontal distribution of aerosol mass concentration by micro pulse lidar[J].
Optics and Precision Engineering, 2017, 25(7): 1697-1704. (in Chinese)
|
[28] |
CHENG ZH T, LIU D, LUO J,
et al. Influences analysis of the spectral filter transmission on the performance of high-spectral-resolution lidar[J].
Acta Optica Sinica, 2014, 34(8): 0801003. (in Chinese)
doi:10.3788/AOS201434.0801003
|