Volume 14Issue 3
May 2021
Turn off MathJax
Article Contents
HUANG Zhi-yi, WANG Chun-sheng, HE Shuai, GU Xiao-peng, DONG Juan, XU Guo-cheng. Improvement of the ultrasonic testing accuracy of laser welding fusion width[J]. Chinese Optics, 2021, 14(3): 652-660. doi: 10.37188/CO.2020-0149
Citation: HUANG Zhi-yi, WANG Chun-sheng, HE Shuai, GU Xiao-peng, DONG Juan, XU Guo-cheng. Improvement of the ultrasonic testing accuracy of laser welding fusion width[J].Chinese Optics, 2021, 14(3): 652-660.doi:10.37188/CO.2020-0149

Improvement of the ultrasonic testing accuracy of laser welding fusion width

doi:10.37188/CO.2020-0149
Funds:Supported by Science and Technology Development Plan of Jilin Province (No. 20190302044GX); Changchun Science and Technology Plan (No.18SS016)
More Information
  • Corresponding author:dongjuan@jlu.edu.cn
  • Received Date:24 Aug 2020
  • Rev Recd Date:20 Oct 2020
  • Available Online:05 Feb 2021
  • Publish Date:14 May 2021
  • Due to the tiny dimensions of lap laser welding joints, there is significant error in weld width detection when using the traditional 6 dB method. In order to improve the method’s detection accuracy and study its source of error, the finite element analysis method is used to analyze the propagation law of incident ultrasonic waves and reflected ultrasonic echo characteristics inside a laser-welded joint. Based on a modified 6 dB method, a laser welding joint melt width evaluation model is constructed and verified through physical experiments. The experimental results show that the primary echo amplitude of the bottom surface of the upper plate can be used as a characteristic value that reflects the internal structure of the joint. When the center of the probe corresponds to the edge of the weld fusion line inside the joint, the attenuation of the primary echo amplitude varies with the thickness of the upper plate, and the traditional 6 dB method can be modified according to the attenuation degree which related to the upper plate’s thickness. Based on this, the effective weld width at the contact surface of the inner plate of the joint can be calculated quantitatively. The ultrasonic testing results of the actual laser welding joints confirmed that the melt width of the laser welding joints obtained by the modified 6 dB method agree with the results of the physical experiments, which means that this provides a very practical method for accurate ultrasonic testing of laser welding joints in real-world production.

  • loading
  • [1]
    LI Y A, LI Y F, WANG Q L, et al. Measurement and defect detection of the weld bead based on online vision inspection[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(7): 1841-1849. doi:10.1109/TIM.2009.2028222
    [2]
    韩晓辉, 陈静, 阚盈, 等. 不锈钢薄板非熔透 搭接焊热源模型[J]. 中国 ,2017,44(5):0502002. doi:10.3788/CJL201744.0502002

    HAN X H, CHEN J, KAN Y, et al. Heat source model for non-penetration laser lap welding of stainless steel sheets[J]. Chinese Journal of Lasers, 2017, 44(5): 0502002. (in Chinese) doi:10.3788/CJL201744.0502002
    [3]
    CAO X, JAHAZI M, IMMARIGEON J P, et al. A review of laser welding techniques for magnesium alloys[J]. Journal of Materials Processing Technology, 2006, 171(2): 188-204. doi:10.1016/j.jmatprotec.2005.06.068
    [4]
    LACKI P, ADAMUS K. Numerical simulation of the electron beam welding process[J]. Computers& Structures, 2011, 89(11-12): 977-985.
    [5]
    AI Y W, SHAO X Y, JIANG P, et al. Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials[J]. Applied Physics A, 2015, 121(2): 555-569. doi:10.1007/s00339-015-9408-5
    [6]
    高向东, 李竹曼, 游德勇, 等. 焊匙孔特征的近红外与X射线传感分析[J]. 光学 精密工程,2016,24(10):2400-2407. doi:10.3788/OPE.20162410.2400

    GAO X D, LI ZH M, YOU D Y, et al. Analysis of laser welding keyhole characteristics based on near-infrared high speed camera and X-ray sensing[J]. Optics and Precision Engineering, 2016, 24(10): 2400-2407. (in Chinese) doi:10.3788/OPE.20162410.2400
    [7]
    陈玉华, 戈军委, 刘奋成, 等. TiNi形状记忆合金/钛合金异种材料 焊[J]. 光学 精密工程,2014,22(8):2075-2080. doi:10.3788/OPE.20142208.2075

    CHEN Y H, GE J W, LIU F CH, et al. Micro laser welding of dissimilar materials between TiNi shape memory alloy and titanium alloy[J]. Optics and Precision Engineering, 2014, 22(8): 2075-2080. (in Chinese) doi:10.3788/OPE.20142208.2075
    [8]
    梁行, 阚盈, 姜云禄, 等. 不锈钢薄板 搭接焊接头的力学性能[J]. 中国 ,2018,45(6):0602001. doi:10.3788/CJL201845.0602001

    LIANG H, KAN Y, JIANG Y L, et al. Mechanical properties of laser overlap welded joints of stainless steel sheets[J]. Chinese Journal of Lasers, 2018, 45(6): 0602001. (in Chinese) doi:10.3788/CJL201845.0602001
    [9]
    KUO T Y, LIN H C. Effects of pulse level of Nd-YAG laser on tensile properties and formability of laser weldments in automotive aluminum alloys[J]. Materials Science and Engineering: A, 2006, 416(1-2): 281-289. doi:10.1016/j.msea.2005.10.041
    [10]
    陈子琴, 高向东, 王琳. 大功率盘形 焊焊缝背面宽度预测[J]. 光学 精密工程,2017,25(9):2524-2531. doi:10.3788/OPE.20172509.2524

    CHEN Z Q, GAO X D, WANG L. Weld width prediction of weldment bottom surface in high-power disk laser welding[J]. Optics and Precision Engineering, 2017, 25(9): 2524-2531. (in Chinese) doi:10.3788/OPE.20172509.2524
    [11]
    彭进, 李俐群, 张瑞珠, 等. 铝合金电弧预熔丝 焊工艺特性研究[J]. 与光电子学进展,2017,54(6):061404.

    PENG J, LI L Q, ZHANG R ZH, et al. Study on aluminum alloy laser welding with pre-melted liquid filler by arc[J]. Laser& Optoelectronic Progress, 2017, 54(6): 061404. (in Chinese)
    [12]
    黄怡洁, 高向东, 林少铎. 焊接参数对有机玻璃与不锈钢接头力学性能的影响[J]. 中国 ,2017,44(12):1202006. doi:10.3788/CJL201744.1202006

    HUANG Y J, GAO X D, LIN SH D. Influences of laser welding parameters on mechanical properties of polymethyl methacrylate and stainless-steel joints[J]. Chinese Journal of Lasers, 2017, 44(12): 1202006. (in Chinese) doi:10.3788/CJL201744.1202006
    [13]
    DITCHBURN R J, BURKE S K, SCALA C M. NDT of welds: state of the art[J]. NDT& E International, 1996, 29(2): 111-117.
    [14]
    MANSOUR T M. Ultrasonic inspection of spot welds in thin-gage steel[J]. Materials Evaluation, 1988, 46(5): 650-658.
    [15]
    LIU J, XU G CH, GU X P, et al. Ultrasonic C-scan detection for stainless steel spot welds based on signal analysis in frequency domain[J]. ISIJ International, 2014, 54(8): 1876-1882. doi:10.2355/isijinternational.54.1876
    [16]
    CHERTOV A M, MAEV R G, SEVERIN F M. Acoustic microscopy of internal structure of resistance spot welds[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(8): 1521-1529. doi:10.1109/TUFFC.2007.422
    [17]
    ZHOU G H, XU G CH, GU X P, et al. Research on evaluating laser welding quality based on two-dimensional array ultrasonic probe[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(5): 1717-1723.
    [18]
    CHEN ZH H, SHI Y W, JIAO B Q, et al. Ultrasonic nondestructive evaluation of spot welds for zinc-coated high strength steel sheet based on wavelet packet analysis[J]. Journal of Materials Processing Technology, 2009, 209(5): 2329-2337. doi:10.1016/j.jmatprotec.2008.05.030
    [19]
    SONG Y K, HUA L, WANG X K, et al. Research on the detection model and method for evaluating spot welding quality based on ultrasonic A-scan analysis[J]. Journal of Nondestructive Evaluation, 2016, 35(1): 4. doi:10.1007/s10921-015-0319-3
    [20]
    NAKAHATA K, CHANG J J, TAKAHASHI M, et al. Finite integration technique for coupled acoustic and elastic wave simulation and its application to noncontact ultrasonic testing[J]. Acoustical Science and Technology, 2014, 35(5): 260-268. doi:10.1250/ast.35.260
    [21]
    DELRUE S, VAN DEN ABEELE K, BLOMME E, et al. Two-dimensional simulation of the single-sided air-coupled ultrasonic pitch-catch technique for non-destructive testing[J]. Ultrasonics, 2010, 50(2): 188-196. doi:10.1016/j.ultras.2009.08.005
    [22]
    BAEK E, YIM H. Numerical modeling and simulation for ultrasonic inspection of anisotropic austenitic welds using the mass-spring lattice model[J]. NDT& E International, 2011, 44(7): 571-582.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views(1087) PDF downloads(65) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map