Citation: | ZHANG Shen-hua, YANG Yan-xi, QIN Qiao-meng. A fast blind denoising method for grating image[J].Chinese Optics, 2021, 14(3): 596-604.doi:10.37188/CO.2020-0166 |
[1] |
王建华, 杨延西. 基于彩色编码光栅投影的双N步相移轮廓术[J]. 中国光学,2019,12(3):616-627.
doi:10.3788/co.20191203.0616
WANG J H, YANG Y X. Double N-step phase-shifting profilometry using color-encoded grating projection[J].
Chinese Optics, 2019, 12(3): 616-627. (in Chinese)
doi:10.3788/co.20191203.0616
|
[2] |
张申华, 杨延西. 一种针对投影仪gamma效应的相位误差补偿方法[J]. 仪器仪表学报,2019,40(11):1-8.
ZHANG SH H, YANG Y X. A phase error compensation method for the gamma effect of projector[J].
Chinese Journal of Scientific Instrument, 2019, 40(11): 1-8. (in Chinese)
|
[3] |
邓吉, 李健, 封皓, 等. 不连续相位跳变点的三维深度分割[J]. 光学 精密工程,2019,27(11):2459-2466.
doi:10.3788/OPE.20192711.2459
DENG J, LI J, FENG H,
et al. Three-dimensional depth segmentation technique utilizing discontinuities of wrapped phase sequence[J].
Optics and Precision Engineering, 2019, 27(11): 2459-2466. (in Chinese)
doi:10.3788/OPE.20192711.2459
|
[4] |
丁超, 唐力伟, 曹立军, 等. 深孔内表面结构光图像几何畸变校正[J]. 光学 精密工程,2018,26(10):2555-2564.
doi:10.3788/OPE.20182610.2555
DING CH, TANG L W, CAO L J,
et al. Geometric distortion correction for structured-light image of deep-hole inner-surface[J].
Optics and Precision Engineering, 2018, 26(10): 2555-2564. (in Chinese)
doi:10.3788/OPE.20182610.2555
|
[5] |
韩玉兰, 赵永平, 王启松, 等. 稀疏表示下的噪声图像超分辨率重构[J]. 光学 精密工程,2017,25(6):1619-1626.
doi:10.3788/OPE.20172506.1619
HAN Y L, ZHAO Y P, WANG Q S,
et al. Reconstruction of super resolution for noise image under the sparse representation[J].
Optics and Precision Engineering, 2017, 25(6): 1619-1626. (in Chinese)
doi:10.3788/OPE.20172506.1619
|
[6] |
谢斌, 黄安, 黄辉. 本征图像分解的稀疏表示彩色图像去噪算法[J]. 液晶与显示,2019,34(11):1104-1114.
doi:10.3788/YJYXS20193411.1104
XIE B, HUANG A, HUANG H. Color image denoising algorithm based on intrinsic image decomposition and sparse representation[J].
Chinese Journal of Liquid Crystals and Displays, 2019, 34(11): 1104-1114. (in Chinese)
doi:10.3788/YJYXS20193411.1104
|
[7] |
马逸东, 周顺勇. 基于连通性检测的图像椒盐噪声滤波算法[J]. 液晶与显示,2020,35(2):167-172.
doi:10.3788/YJYXS20203502.0167
MA Y D, ZHOU SH Y. Salt and pepper noise filtering algorithm based on connectivity detection[J].
Chinese Journal of Liquid Crystals and Displays, 2020, 35(2): 167-172. (in Chinese)
doi:10.3788/YJYXS20203502.0167
|
[8] |
WANG J H, YANG Y X. An efficient phase error self-compensation algorithm for nonsinusoidal gating fringes in phase-shifting profilometry[J].
Review of Scientific Instrument, 2018, 89(6): 063115.
doi:10.1063/1.5025593
|
[9] |
WANG H X, QIAN K M, GAO W J,
et al. Fringe pattern denoising using coherence-enhancing diffusion[J].
Optics Letters, 2009, 34(8): 1141-1143.
doi:10.1364/OL.34.001141
|
[10] |
TANG CH, HAN L, REN H W,
et al. Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes[J].
Optics Letters, 2008, 33(19): 2179-2181.
doi:10.1364/OL.33.002179
|
[11] |
ZHOU Q L, TANG CH, LI B Y,
et al. Adaptive oriented PDEs filtering methods based on new controlling speed function for discontinuous optical fringe patterns[J].
Optics and Lasers in Engineering, 2018, 100: 111-117.
doi:10.1016/j.optlaseng.2017.07.018
|
[12] |
DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage[J].
Biometrika, 1994, 81(3): 425-455.
doi:10.1093/biomet/81.3.425
|
[13] |
PYATYKH S, HESSER J, ZHENG L. Image noise level estimation by principal component analysis[J].
IEEE Transactions on Image Processing, 2013, 22(2): 687-699.
doi:10.1109/TIP.2012.2221728
|
[14] |
LIU X H, TANAKA M, OKUTOMI M. Single-image noise level estimation for blind denoising[J].
IEEE Transactions on Image Processing, 2013, 22(12): 5226-5237.
doi:10.1109/TIP.2013.2283400
|
[15] |
汪浩然, 夏克文, 任苗苗, 等. 结合PCA及字典学习的高光谱图像自适应去噪方法[J]. 计算机应用,2016,36(12):3411-3417, 3422.
doi:10.11772/j.issn.1001-9081.2016.12.3411
WANG H R, XIA K W, REN M M,
et al. Adaptive denoising method of hyperspectral remote sensing image based on PCA and dictionary learning[J].
Journal of Computer Applications, 2016, 36(12): 3411-3417, 3422. (in Chinese)
doi:10.11772/j.issn.1001-9081.2016.12.3411
|
[16] |
肖进胜, 朱力, 赵博强, 等. 基于主成分分析的分块视频噪声估计[J]. 自动化学报,2018,44(9):1618-1625.
XIAO J SH, ZHU L, ZHAO B Q,
et al. Block-based video noise estimation algorithm via principal component analysis[J].
Acta Automatica Sinica, 2018, 44(9): 1618-1625. (in Chinese)
|
[17] |
乔双, 吴晓阳, 赵辰一, 等. 基于PCA和BM3D的噪声估计方法及其在中子图像去噪中的应用[J]. 原子能科学技术,2018,52(4):729-736.
doi:10.7538/yzk.2017.youxian.0457
QIAO SH, WU X Y, ZHAO CH Y,
et al. Noise level estimation method based on PCA and BM3D for neutron image denoising[J].
Atomic Energy Science and Technology, 2018, 52(4): 729-736. (in Chinese)
doi:10.7538/yzk.2017.youxian.0457
|
[18] |
杨华. 基于稀疏主成分分析的图像噪声估计方法[J]. 液晶与显示,2019,34(9):913-920.
doi:10.3788/YJYXS20193409.0913
YANG H. Image noise estimation method based on sparse principal component analysis[J].
Chinese Journal of Liquid Crystals and Displays, 2019, 34(9): 913-920. (in Chinese)
doi:10.3788/YJYXS20193409.0913
|
[19] |
叶杨, 徐志伟, 陈仁文, 等. 基于KPCA和SVM的直升机旋翼桨叶损伤源定位[J]. 电子测量与仪器学报,2020,34(4):118-123.
YE Y, XU ZH W, CHEN R W,
et al. Damage source location of helicopter rotor blade based on KPCA and SVM[J].
Journal of Electronic Measurement and Instrumentation, 2020, 34(4): 118-123. (in Chinese)
|
[20] |
吴疆, 尤飞, 蒋平. 基于回归分析和主成分分析的噪声方差估计方法[J]. 电子与信息学报,2018,40(5):1195-1201.
doi:10.11999/JEIT170624
WU J, YOU F, JIANG P. Noise variance estimation method based on regression analysis and principal component analysis[J].
Journal of Electronics&
Information Technology, 2018, 40(5): 1195-1201. (in Chinese)
doi:10.11999/JEIT170624
|
[21] |
ZUO CH, HUANG L, ZHANG M L,
et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review[J].
Optics and Lasers in Engineering, 2016, 85: 84-103.
doi:10.1016/j.optlaseng.2016.04.022
|
[22] |
JIANG P, WANG Q, WU J. Efficient noise-level estimation based on principal image texture[J].
IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(7): 1987-1999.
|
[23] |
TOWERS C E, TOWERS D P, JONES J D C. Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry[J].
Optics and Lasers in Engineering, 2005, 43(7): 788-800.
doi:10.1016/j.optlaseng.2004.08.005
|
[24] |
ZUO CH, FENG SH J, HUANG L,
et al. Phase shifting algorithms for fringe projection profilometry: a review[J].
Optics and Lasers in Engineering, 2018, 109: 23-59.
doi:10.1016/j.optlaseng.2018.04.019
|
[25] |
MAO C L, LU R S, LIU Z J. A multi-frequency inverse-phase error compensation method for projector nonlinear in 3D shape measurement[J].
Optics Communications, 2018, 419: 75-85.
doi:10.1016/j.optcom.2018.03.006
|
[26] |
ZHANG CH W, ZHAO H, ZHANG L,
et al. Full-field phase error detection and compensation method for digital phase-shifting fringe projection profilometry[J].
Measurement Science and Technology, 2015, 26(3): 035201.
doi:10.1088/0957-0233/26/3/035201
|
[27] |
GAI SH Y, DA F P, LIU CH. Multiple-gamma-value based phase error compensation method for phase measuring profilometry[J].
Applied Optics, 2018, 57(35): 10290-10299.
doi:10.1364/AO.57.010290
|