Citation: | LI Xiang-jun, HOU Xiao-mei, CHENG Gang, QIU Guo-hua, YAN De-xian, LI Jiu-sheng. Simulation on tunable graphene metasurface focusing mirror based on flexible substrate[J].Chinese Optics, 2021, 14(4): 1019-1028.doi:10.37188/CO.2020-0171 |
[1] |
MANJAPPA M, SINGH R. Materials for terahertz optical science and technology[J].
Advanced Optical Materials, 2020, 8(3): 1901984.
doi:10.1002/adom.201901984
|
[2] |
HE J W, DONG T, CHI B H,
et al. Metasurfaces for terahertz wavefront modulation: a review[J].
Journal of Infrared,
Millimeter,
and Terahertz Waves, 2020, 41(6): 607-631.
doi:10.1007/s10762-020-00677-3
|
[3] |
ARBABI E, ARBABI A, KAMALI S M,
et al. MEMS-tunable dielectric metasurface lens[J].
Nature Communications, 2018, 9(1): 812.
doi:10.1038/s41467-018-03155-6
|
[4] |
YU N F, GENEVET P, KATS M A,
et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J].
Science, 2011, 334(6054): 333-337.
doi:10.1126/science.1210713
|
[5] |
林雨, 蒋春萍. 可调谐超构透镜的发展现状[J]. 中国光学,2020,13(1):43-61.
doi:10.3788/co.20201301.0043
LIN Y, JIANG CH P. Recent progress in tunable metalenses[J].
Chinese Optics, 2020, 13(1): 43-61. (in Chinese)
doi:10.3788/co.20201301.0043
|
[6] |
SHERROTT M C, HON P W C, FOUNTAINE K T,
et al. Experimental demonstration of > 230 phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces[J].
Nano Letters, 2017, 17(5): 3027-3034.
doi:10.1021/acs.nanolett.7b00359
|
[7] |
BELOTELOV V I, KREILKAMP L E, AKIMOV I A,
et al. Plasmon-mediated magneto-optical transparency[J].
Nature Communications, 2013, 4: 2128.
doi:10.1038/ncomms3128
|
[8] |
LI L L, CUI T J, JI W,
et al. Electromagnetic reprogrammable coding-metasurface holograms[J].
Nature Communications, 2017, 8(1): 197.
doi:10.1038/s41467-017-00164-9
|
[9] |
LIU P X, ZHAO Y, QIN R X,
et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J].
Science, 2016, 352(6287): 797-800.
doi:10.1126/science.aaf5251
|
[10] |
KOCH U, HOESSBACHER C, EMBORAS A,
et al. Optical memristive switches[J].
Journal of Electroceramics, 2017, 39(1-4): 239-250.
doi:10.1007/s10832-017-0072-3
|
[11] |
WANG K H, LI J SH, YAO J Q. Sensitive terahertz free space modulator using CsPbBr
3perovskite quantum dots–embedded metamaterial[J].
Journal of Infrared,
Millimeter,
and Terahertz Waves, 2020, 41(5): 557-567.
doi:10.1007/s10762-020-00680-8
|
[12] |
WANG Y, CUI Z J, ZHU D Y,
et al. Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface[J].
Optics Express, 2018, 26(12): 15343-15352.
doi:10.1364/OE.26.015343
|
[13] |
HE J W, XIE ZH W, SUN W F,
et al. Terahertz tunable metasurface lens based on vanadium dioxide phase transition[J].
Plasmonics, 2016, 11(5): 1285-1290.
doi:10.1007/s11468-015-0173-2
|
[14] |
GUO J Y, WANG T, ZHAO H,
et al. Reconfigurable terahertz metasurface pure phase holograms[J].
Advanced Optical Materials, 2019, 7(10): 1801696.
doi:10.1002/adom.201801696
|
[15] |
LI SH Q, XU X W, VEETIL R M,
et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J].
Science, 2019, 364(6445): 1087-1090.
doi:10.1126/science.aaw6747
|
[16] |
SHE A L, ZHANG SH Y, SHIAN S,
et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J].
Science Advances, 2018, 4(2): eaap9957.
doi:10.1126/sciadv.aap9957
|
[17] |
ZHU W M, SONG Q H, YAN L B,
et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J].
Advanced Materials, 2015, 27(32): 4739-4743.
doi:10.1002/adma.201501943
|
[18] |
BEHROOZINIA S, RAJABALIPANAH H, ABDOLALI A. Real-time terahertz wave channeling via multifunctional metagratings: a sparse array of all-graphene scatterers[J].
Optics Letters, 2020, 45(4): 795-798.
doi:10.1364/OL.383001
|
[19] |
FAN Y CH, SHEN N H, ZHANG F L,
et al. Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances[J].
ACS Photonics, 2018, 5(4): 1612-1618.
doi:10.1021/acsphotonics.8b00057
|
[20] |
HUANG Y C, LIN M F, CHANG C P. Landau levels and magneto-optical properties of graphene ribbons[J].
Journal of Applied Physics, 2008, 103(7): 073709.
doi:10.1063/1.2902455
|
[21] |
DING P, LI Y, SHAO L,
et al. Graphene aperture-based metalens for dynamic focusing of terahertz waves[J].
Optics Express, 2018, 26(21): 28038-28050.
doi:10.1364/OE.26.028038
|
[22] |
HUANG Z G, HU B, LIU W G,
et al. Dynamical tuning of terahertz meta-lens assisted by graphene[J].
Journal of the Optical Society of America B, 2017, 34(9): 1848-1854.
doi:10.1364/JOSAB.34.001848
|
[23] |
CHEN D B, YANG J B, HUANG J,
et al. The novel graphene metasurfaces based on split-ring resonators for tunable polarization switching and beam steering at terahertz frequencies[J].
Carbon, 2019, 154: 350-356.
doi:10.1016/j.carbon.2019.08.020
|
[24] |
YIN ZH P, ZHENG Q, WANG K Y,
et al. Tunable dual-band terahertz metalens based on stacked graphene metasurfaces[J].
Optics Communications, 2018, 429: 41-45.
doi:10.1016/j.optcom.2018.07.084
|
[25] |
ZHANG Z, YAN X, LIANG L J,
et al. The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies[J].
Carbon, 2018, 132: 529-538.
doi:10.1016/j.carbon.2018.02.095
|
[26] |
HAN S J, KIM S, KIM S,
et al. Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules[J].
ACS Nano, 2020, 14(1): 1166-1175.
doi:10.1021/acsnano.9b09277
|
[27] |
KAMALI S M, ARBABI E, ARBABI A,
et al. Highly tunable elastic dielectric metasurface lenses[J].
Laser&
Photonics Reviews, 2016, 10(6): 1002-1008.
|
[28] |
CALLEWAERT F, VELEV V, JIANG SH ZH,
et al. Inverse-designed stretchable metalens with tunable focal distance[J].
Applied Physics Letters, 2018, 112(9): 091102.
doi:10.1063/1.5017719
|
[29] |
杨渤, 程化, 陈树琪, 等. 基于傅里叶分析的超表面多维光场调控[J]. 光学学报,2019,39(1):86-104.
YANG B, CHENG H, CHEN SH Q,
et al. Multi-dimensional manipulation of optical field by metasurfaces based on Fourier analysis[J].
Acta Optica Sinica, 2019, 39(1): 86-104. (in Chinese)
|
[30] |
CHEN M K, WU Y, FENG L,
et al. Principles, Functions and Applications of Optical Meta-lens[J].
Advanced Optical Materials, 2021, 9(4): 2001414.
|
[31] |
都妍, 武亚君, 张元, 等. 基于导电聚合物的太赫兹频率选择表面[J]. 太赫兹科学与电子信息学报,2019,17(2):205-208.
doi:10.11805/TKYDA201902.0205
DU Y, WU Y J, ZHANG Y,
et al. Terahertz frequency selective surface based on DMSO-doped PEDOT: PSS films[J].
Journal of Terahertz Science and Electronic Information Technology, 2019, 17(2): 205-208. (in Chinese)
doi:10.11805/TKYDA201902.0205
|
[32] |
PANCHAKARLA L S, SUBRAHMANYAM K S, SAHA S K,
et al. Synthesis, structure, and properties of boron- and nitrogen- doped graphene[J].
Advanced Materials, 2009, 21(46): 4726-4730.
|
[33] |
WEI D CH, LIU Y Q, WANG Y,
et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J].
Nano Letters, 2009, 9(5): 1752-1758.
doi:10.1021/nl803279t
|
[34] |
GUO B D, FANG L, ZHANG B H,
et al. Graphene doping: a review[J].
Insciences Journal, 2011, 1(2): 80-89.
|
[35] |
CHHIKARA M, GAPONENKO I, PARUCH P,
et al. Effect of uniaxial strain on the optical Drude scattering in graphene[J].
2D Materials, 2017, 4(2): 025081.
doi:10.1088/2053-1583/aa6c10
|
[36] |
YU N F, CAPASSO F. Flat optics with designer metasurfaces[J].
Nature Materials, 2014, 13(2): 139-150.
doi:10.1038/nmat3839
|
[37] |
ARBABI A, HORIE Y, BALL A J,
et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J].
Nature Communications, 2015, 6(1): 7069.
doi:10.1038/ncomms8069
|