Citation: | CHEN Zhe-xue, WANG Wei-biao, LIANG Cheng, ZHANG Yong. Progress on two-dimensional quantum sheets and their optics[J].Chinese Optics, 2021, 14(1): 1-17.doi:10.37188/CO.2020-0176 |
[1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V,
et al. Electric field effect in atomically thin carbon films[J].
Science, 2004, 306(5696): 666-669.
doi:10.1126/science.1102896
|
[2] |
ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J].
Nature Reviews Materials, 2017, 2(2): 16098.
doi:10.1038/natrevmats.2016.98
|
[3] |
TAN CH L, CAO X H, WU X J,
et al. Recent advances in ultrathin two-dimensional nanomaterials[J].
Chemical Reviews, 2017, 117(9): 6225-6331.
doi:10.1021/acs.chemrev.6b00558
|
[4] |
XU Y H, WANG X X, ZHANG W L,
et al. Recent progress in two-dimensional inorganic quantum dots[J].
Chemical Society Reviews, 2018, 47(2): 586-625.
doi:10.1039/C7CS00500H
|
[5] |
ASHTON M, PAUL J, SINNOTT S B,
et al. Topology-scaling identification of layered solids and stable exfoliated 2D materials[J].
Physical Review Letters, 2017, 118(10): 106101.
doi:10.1103/PhysRevLett.118.106101
|
[6] |
WANG X M, JONES A M, SEYLER K L,
et al. Highly anisotropic and robust excitons in monolayer black phosphorus[J].
Nature Nanotechnology, 2015, 10(6): 517-521.
doi:10.1038/nnano.2015.71
|
[7] |
TAN CH L, ZHANG H. Two-dimensional transition metal dichalcogenide nanosheet-based composites[J].
Chemical Society Reviews, 2015, 44(9): 2713-2731.
doi:10.1039/C4CS00182F
|
[8] |
NOVOSELOV K S, MISHCHENKO A, CARVALHO A,
et al. 2D materials and van der Waals heterostructures[J].
Science, 2016, 353(6298): aac9439.
|
[9] |
LIU Y, WEISS N O, DUAN X D,
et al. Van der Waals heterostructures and devices[J].
Nature Reviews Materials, 2016, 1(9): 16042.
|
[10] |
HUANG B, CLARK G, NAVARRO-MORATALLA E,
et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J].
Nature, 2017, 546(7657): 270-273.
doi:10.1038/nature22391
|
[11] |
CAO Y, FATEMI V, FANG S A,
et al. Unconventional superconductivity in magic-angle graphene superlattices[J].
Nature, 2018, 556(7699): 43-50.
doi:10.1038/nature26160
|
[12] |
BONACCORSO F, COLOMBO L, YU G H,
et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J].
Science, 2015, 347(6217): 1246501.
doi:10.1126/science.1246501
|
[13] |
BHIMANAPATI G R, LIN ZH, MEUNIER V,
et al. Recent advances in two-dimensional materials beyond graphene[J].
ACS Nano, 2015, 9(12): 11509-11539.
doi:10.1021/acsnano.5b05556
|
[14] |
ZHU F F, CHEN W J, XU Y,
et al. Epitaxial growth of two-dimensional stanene[J].
Nature Materials, 2015, 14(10): 1020-1025.
doi:10.1038/nmat4384
|
[15] |
DONG R H, ZHANG T, FENG X L. Interface-assisted synthesis of 2D materials: trend and challenges[J].
Chemical Reviews, 2018, 118(13): 6189-6235.
doi:10.1021/acs.chemrev.8b00056
|
[16] |
LEE Y H, ZHANG X Q, ZHANG W J,
et al. Synthesis of large-area MoS
2atomic layers with chemical vapor deposition[J].
Advanced Materials, 2012, 24(17): 2320-2325.
doi:10.1002/adma.201104798
|
[17] |
PENG D, ZHANG L, LI F F,
et al. Facile and green approach to the synthesis of boron nitride quantum dots for 2, 4, 6-trinitrophenol sensing[J].
ACS Applied Materials&
Interfaces, 2018, 10(8): 7315-7323.
|
[18] |
NAJAFI L, TAHERI B, MARTíN-GARCÍA B,
et al. MoS
2quantum dot/graphene hybrids for advanced interface engineering of a CH
3NH
3PbI
3perovskite solar cell with an efficiency of over 20%[J].
ACS Nano, 2018, 12(11): 10736-10754.
doi:10.1021/acsnano.8b05514
|
[19] |
YONG Y, CHENG X J, BAO T,
et al. Tungsten sulfide quantum dots as multifunctional nanotheranostics for
in vivodual-modal image-guided photothermal/radiotherapy synergistic therapy[J].
ACS Nano, 2015, 9(12): 12451-12463.
doi:10.1021/acsnano.5b05825
|
[20] |
HA H D, HAN D J, CHOI J S,
et al. Dual role of blue luminescent MoS
2quantum dots in fluorescence resonance energy transfer phenomenon[J].
Small, 2014, 10(19): 3858-3862.
doi:10.1002/smll.201400988
|
[21] |
ZHOU J B, LIN J H, HUANG X W,
et al. A library of atomically thin metal chalcogenides[J].
Nature, 2018, 556(7701): 355-359.
doi:10.1038/s41586-018-0008-3
|
[22] |
WANG L, XU X Z, ZHANG L N,
et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper[J].
Nature, 2019, 570(7759): 91-95.
doi:10.1038/s41586-019-1226-z
|
[23] |
XU Y Q, CHEN SH L, DOU ZH P,
et al. Robust production of 2D quantum sheets from bulk layered materials[J].
Materials Horizons, 2019, 6(7): 1416-1424.
doi:10.1039/C9MH00272C
|
[24] |
BAI L Q, XUE N, ZHAO Y F,
et al. Dual-mode emission of single-layered graphene quantum dots in confined nanospace: Anti-counterfeiting and sensor applications[J].
Nano Research, 2018, 11(4): 2034-2045.
doi:10.1007/s12274-017-1820-z
|
[25] |
CAO Y, DONG H F, PU SH T,
et al. Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport[J].
Nano Research, 2018, 11(8): 4074-4081.
doi:10.1007/s12274-018-1990-3
|
[26] |
LEI F C, LIU W, SUN Y F,
et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction[J].
Nature Communications, 2016, 7: 12697.
doi:10.1038/ncomms12697
|
[27] |
XU H, ZHANG L, DING Z CH,
et al. Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells[J].
Nano Research, 2018, 11(8): 4293-4301.
doi:10.1007/s12274-018-2015-y
|
[28] |
DEB J, PAUL D, SARKAR U. Density functional theory investigation of nonlinear optical properties of T-graphene quantum dots[J].
The Journal of Physical Chemistry A, 2020, 124(7): 1312-1320.
doi:10.1021/acs.jpca.9b10241
|
[29] |
BRANDT O, LAGE H, PLOOG K. Large excitonic nonlinearity in InAs quantum sheets[J].
Applied Physics Letters, 1991, 59(5): 576-578.
doi:10.1063/1.105391
|
[30] |
BUTCHER P N, MCINNES J A. The energy dependence of the conductance and scattering wave functions of a 2D quantum dot[J].
Journal of Physics:
Condensed Matter, 1995, 7(33): 6717-6726.
doi:10.1088/0953-8984/7/33/010
|
[31] |
徐元清, 张勇. 首次实现二维量子片的普适和规模制备[J]. 物理,2019,48(8):522-525.
doi:10.7693/wl20190808
XU Y Q, ZHANG Y. First demonstration of universal and scalable production of 2D QSs[J].
Physics, 2019, 48(8): 522-525. (in Chinese)
doi:10.7693/wl20190808
|
[32] |
ALLEN M J, TUNG V C, KANER R B. Honeycomb Carbon: a review of graphene[J].
Chemical Reviews, 2010, 110(1): 132-145.
doi:10.1021/cr900070d
|
[33] |
ZHOU X J, GUO SH W, ZHONG P,
et al. Large scale production of graphene quantum dots through the reaction of graphene oxide with sodium hypochlorite[J].
RSC Advances, 2016, 6(60): 54644-54648.
doi:10.1039/C6RA06012A
|
[34] |
LI H L, TAY R Y, TSANG S H,
et al. Controllable synthesis of highly luminescent boron nitride quantum dots[J].
Small, 2015, 11(48): 6491-6499.
doi:10.1002/smll.201501632
|
[35] |
DING X G, PENG F, ZHOU J,
et al. Defect engineered bioactive transition metals dichalcogenides quantum dots[J].
Nature Communications, 2019, 10: 41.
doi:10.1038/s41467-018-07835-1
|
[36] |
SAMADI M, SARIKHANI N, ZIRAK M,
et al. Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives[J].
Nanoscale Horizons, 2018, 3(2): 90-204.
doi:10.1039/C7NH00137A
|
[37] |
SPLENDIANI A, SUN L, ZHANG Y B,
et al. Emerging photoluminescence in monolayer MoS
2[J].
Nano Letters, 2010, 10(4): 1271-1275.
doi:10.1021/nl903868w
|
[38] |
WANG Q H, KALANTAR-ZADEH K, KIS A,
et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J].
Nature Nanotechnology, 2012, 7(11): 699-712.
doi:10.1038/nnano.2012.193
|
[39] |
MIRÓ P, AUDIFFRED M, HEINE T. An atlas of two-dimensional materials[J].
Chemical Society Reviews, 2014, 43(18): 6537-6554.
doi:10.1039/C4CS00102H
|
[40] |
CHURCHILL H O H, JARILLO-HERRERO P. Phosphorus joins the family[J].
Nature Nanotechnology, 2014, 9(5): 330-331.
doi:10.1038/nnano.2014.85
|
[41] |
LI L K, YU Y J, YE G J,
et al. Black phosphorus field-effect transistors[J].
Nature Nanotechnology, 2014, 9(5): 372-377.
doi:10.1038/nnano.2014.35
|
[42] |
WANG Y, WANG X X, XU Y H,
et al. Simultaneous synthesis of WO
3−
xquantum dots and bundle-like nanowires using a one-pot template-free solvothermal strategy and their versatile applications[J].
Small, 2017, 13(13): 1603689.
|
[43] |
DING D D, GUO W, GUO CH SH,
et al. MoO
3−
xquantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment[J].
Nanoscale, 2017, 9(5): 2020-2029.
doi:10.1039/C6NR09046J
|
[44] |
XUE Q, ZHANG H J, ZHU M SH,
et al. Photoluminescent Ti
3C
2MXene quantum dots for multicolor cellular imaging[J].
Advanced Materials, 2017, 29(15): 1604847.
doi:10.1002/adma.201604847
|
[45] |
LI R J, TANG L B, ZHAO Q,
et al. In
2S
3quantum dots: preparation, properties and optoelectronic application[J].
Nanoscale Research Letters, 2019, 14: 161.
doi:10.1186/s11671-019-2992-0
|
[46] |
HAMER M, TÓVÁRI E, ZHU M J,
et al. Gate-defined quantum confinement in InSe-based van der Waals heterostructures[J].
Nano Letters, 2018, 18(6): 3950-3955.
doi:10.1021/acs.nanolett.8b01376
|
[47] |
CARTER S G, BRACKER A S, BRYANT G W,
et al. Spin-mechanical coupling of an InAs quantum dot embedded in a mechanical resonator[J].
Physical Review Letters, 2018, 121(24): 246801.
doi:10.1103/PhysRevLett.121.246801
|
[48] |
RADISAVLJEVIC B, RADENOVIC A, BRIVIO J,
et al. Single-layer MoS
2transistors[J].
Nature Nanotechnology, 2011, 6(3): 147-150.
doi:10.1038/nnano.2010.279
|
[49] |
BANDURIN D A, TYURNINA A V, YU G L,
et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe[J].
Nature Nanotechnology, 2017, 12(3): 223-227.
doi:10.1038/nnano.2016.242
|
[50] |
MILLER T S, JORGE A B, SUTER T M,
et al. Carbon nitrides: synthesis and characterization of a new class of functional materials[J].
Physical Chemistry Chemical Physics, 2017, 19(24): 15613-15638.
doi:10.1039/C7CP02711G
|
[51] |
ALTAVILLA C, SARNO M, CIAMBELLI P. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS
2@oleylamine (M=Mo, W)[J].
Chemistry of Materials, 2011, 23(17): 3879-3885.
doi:10.1021/cm200837g
|
[52] |
ARSLAN O, BELKOURA L, MATHUR S. Swift synthesis, functionalization and phase-transfer studies of ultrastable, visible light emitting oleate@ZnO quantum dots[J].
Journal of Materials Chemistry C, 2015, 3(45): 11965-11973.
doi:10.1039/C5TC03377B
|
[53] |
LI X ZH, FANG Y Y, WANG J,
et al. High-yield electrochemical production of large-sized and thinly layered NiPS
3flakes for overall water splitting[J].
Small, 2019, 15(30): 1902427.
doi:10.1002/smll.201902427
|
[54] |
GOPALAKRISHNAN D, DAMIEN D, LI B,
et al. Electrochemical synthesis of luminescent MoS
2quantum dots[J].
Chemical Communications, 2015, 51(29): 6293-6296.
doi:10.1039/C4CC09826A
|
[55] |
WANG W J, YU J C, SHEN ZH R,
et al. g-C
3N
4quantum dots: direct synthesis, upconversion properties and photocatalytic application[J].
Chemical Communications, 2014, 50(70): 10148-10150.
doi:10.1039/C4CC02543A
|
[56] |
CHENG ZH ZH, SHIFA T A, WANG F M,
et al. High-yield production of monolayer FePS
3quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution[J].
Advanced Materials, 2018, 30(26): 1707433.
doi:10.1002/adma.201707433
|
[57] |
WANG Y, LIU Y, ZHANG J F,
et al. Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots[J].
Science Advances, 2017, 3(12): e1701500.
doi:10.1126/sciadv.1701500
|
[58] |
ZHANG J F, ZHU T Y, WANG Y,
et al. Self-assembly of 0D/2D homostructure for enhanced hydrogen evolution[J].
Materials Today, 2020, 36: 83-90.
doi:10.1016/j.mattod.2020.02.006
|
[59] |
HAO Y, SU W, HOU L X,
et al. Monolayer single crystal two-dimensional quantum dots via ultrathin cutting and exfoliating[J].
Science China Materials, 2020, 63(6): 1046-1053.
doi:10.1007/s40843-019-1270-x
|
[60] |
HAN CH CH, ZHANG Y, GAO P,
et al. High-yield production of MoS
2and WS
2quantum sheets from their bulk materials[J].
Nano Letters, 2017, 17(12): 7767-7772.
doi:10.1021/acs.nanolett.7b03968
|
[61] |
SYNNATSCHKE K, CIESLIK P A, HARVEY A,
et al. Length- and thickness-dependent optical response of liquid-exfoliated transition metal dichalcogenides[J].
Chemistry of Materials, 2019, 31(24): 10049-10062.
doi:10.1021/acs.chemmater.9b02905
|
[62] |
ZHANG X, LAI ZH CH, LIU ZH D,
et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots[J].
Angewandte Chemie International Edition, 2015, 54(18): 5425-5428.
doi:10.1002/anie.201501071
|
[63] |
LIU Y, LIANG CH L, WU J J,
et al. Reflux pretreatment-mediated sonication: a new universal route to obtain 2D quantum dots[J].
Materials Today, 2019, 22: 17-24.
doi:10.1016/j.mattod.2018.06.007
|
[64] |
XU Y Q, CHANG J Q, LIANG C,
et al. Tailoring multi-walled carbon nanotubes into graphene quantum sheets[J].
ACS Applied Materials&
Interfaces, 2020, 12(42): 47784-47791.
|
[65] |
LIANG CH, SUI X Y, WANG A CH,
et al. Controlled production of MoS
2full-scale nanosheets and their strong size effects[J].
Advanced Materials Interfaces, 2020, 7(24): 2001130.
doi:10.1002/admi.202001130
|
[66] |
AN T C, TANG J, ZHANG Y Y,
et al. Photoelectrochemical conversion from graphitic C
3N
4quantum dot decorated semiconductor nanowires[J].
ACS Applied Materials&
Interfaces, 2016, 8(20): 12772-12779.
|
[67] |
TANG L B, JI R B, LI X M,
et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots[J].
ACS Nano, 2014, 8(6): 6312-6320.
doi:10.1021/nn501796r
|
[68] |
KIM S, HWANG S W, KIM M K,
et al. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape[J].
ACS Nano, 2012, 6(9): 8203-8208.
doi:10.1021/nn302878r
|
[69] |
REN J, WEBER F, WEIGERT F,
et al. Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots[J].
Nanoscale, 2019, 11(4): 2056-2064.
doi:10.1039/C8NR08595A
|
[70] |
LI L L, JI J, FEI R,
et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J].
Advanced Functional Materials, 2012, 22(14): 2971-2979.
doi:10.1002/adfm.201200166
|
[71] |
ZHOU M, LOU X W, XIE Y. Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities[J].
Nano Today, 2013, 8(6): 598-618.
doi:10.1016/j.nantod.2013.12.002
|
[72] |
LIU ZH K, LAU S P, YAN F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing[J].
Chemical Society Reviews, 2015, 44(15): 5638-5679.
doi:10.1039/C4CS00455H
|
[73] |
MANIKANDAN A, CHEN Y Z, SHEN C C,
et al. A critical review on two-dimensional quantum dots (2D QDs): from synthesis toward applications in energy and optoelectronics[J].
Progress in Quantum Electronics, 2019, 68: 100226.
doi:10.1016/j.pquantelec.2019.100226
|
[74] |
SK M A, ANANTHANARAYANAN A, HUANG L,
et al. Revealing the tunable photoluminescence properties of graphene quantum dots[J].
Journal of Materials Chemistry C, 2014, 2(34): 6954-6960.
doi:10.1039/C4TC01191K
|
[75] |
KWON W, KIM Y H, LEE C L,
et al. Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite[J].
Nano Letters, 2014, 14(3): 1306-1311.
doi:10.1021/nl404281h
|
[76] |
JIN S H, KIM D H, JUN G H,
et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups[J].
ACS Nano, 2013, 7(2): 1239-1245.
doi:10.1021/nn304675g
|
[77] |
ZHU X Q, XIANG J X, LI J,
et al. Tunable photoluminescence of MoS
2quantum dots passivated by different functional groups[J].
Journal of Colloid and Interface Science, 2018, 511: 209-214.
doi:10.1016/j.jcis.2017.09.118
|
[78] |
BASKO D M, DUCHEMIN I, BLASE X. Optical properties of graphene quantum dots: the role of chiral symmetry[J].
2D Materials, 2020, 7(2): 025041.
doi:10.1088/2053-1583/ab7688
|
[79] |
NIU X H, LI Y H, SHU H B,
et al. Revealing the underlying absorption and emission mechanism of nitrogen doped graphene quantum dots[J].
Nanoscale, 2016, 8(46): 19376-19382.
doi:10.1039/C6NR06447G
|
[80] |
YEH T F, TENG C Y, CHEN S J,
et al. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination[J].
Advanced Materials, 2014, 26(20): 3297-3303.
doi:10.1002/adma.201305299
|
[81] |
TANG J M, SAKAMOTO M, OHTA H,
et al. 1% defect enriches MoS
2quantum dot: catalysis and blue luminescence[J].
Nanoscale, 2020, 12(7): 4352-4358.
doi:10.1039/C9NR07612C
|
[82] |
QU D, SUN Z CH, ZHENG M,
et al. Three colors emission from S, N Co-doped graphene quantum dots for visible light H
2production and bioimaging[J].
Advanced Optical Materials, 2015, 3(3): 360-367.
doi:10.1002/adom.201400549
|
[83] |
ZHANG SH, JIA X F, WANG E K. Facile synthesis of optical pH-sensitive molybdenum disulfide quantum dots[J].
Nanoscale, 2016, 8(33): 15152-15157.
doi:10.1039/C6NR04726B
|
[84] |
AUTERE A, JUSSILA H, DAI Y Y,
et al. Nonlinear optics with 2D layered materials[J].
Advanced Materials, 2018, 30(24): 1705963.
doi:10.1002/adma.201705963
|
[85] |
LI J L, BAO H CH, HOU X L,
et al. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy[J].
Angewandte Chemie International Edition, 2012, 51(8): 1830-1834.
doi:10.1002/anie.201106102
|
[86] |
SUN J H, GU Y J, LEI D Y,
et al. Mechanistic understanding of excitation-correlated nonlinear optical properties in MoS
2nanosheets and nanodots: the role of exciton resonance[J].
ACS Photonics, 2016, 3(12): 2434-2444.
doi:10.1021/acsphotonics.6b00682
|
[87] |
LIU Q, GUO B D, RAO Z Y,
et al. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[J].
Nano Letters, 2013, 13(6): 2436-2441.
doi:10.1021/nl400368v
|
[88] |
COX J D, SILVEIRO I, DE ABAJO F J G. Quantum effects in the nonlinear response of graphene plasmons[J].
ACS Nano, 2016, 10(2): 1995-2003.
doi:10.1021/acsnano.5b06110
|
[89] |
COX J D, DE ABAJO F J G. Plasmon-enhanced nonlinear wave mixing in nanostructured graphene[J].
ACS Photonics, 2015, 2(2): 306-312.
doi:10.1021/ph500424a
|
[90] |
GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J].
Nature Photonics, 2012, 6(11): 749-758.
doi:10.1038/nphoton.2012.262
|
[91] |
LOW T, CHAVES A, CALDWELL J D,
et al. Polaritons in layered two-dimensional materials[J].
Nature Materials, 2017, 16(2): 182-194.
doi:10.1038/nmat4792
|
[92] |
WANG Y W, LIU S, ZENG B W,
et al. Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots[J].
Nanoscale, 2017, 9(14): 4683-4690.
doi:10.1039/C6NR09235G
|
[93] |
CHEN X, PONRAJ J S, FAN D Y,
et al. An overview of the optical properties and applications of black phosphorus[J].
Nanoscale, 2020, 12(6): 3513-3534.
doi:10.1039/C9NR09122J
|
[94] |
XU Y H, WANG ZH T, GUO ZH N,
et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J].
Advanced Optical Materials, 2016, 4(8): 1223-1229.
doi:10.1002/adom.201600214
|
[95] |
LU S B, MIAO L L, GUO Z N,
et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J].
Optics Express, 2015, 23(9): 11183-11194.
doi:10.1364/OE.23.011183
|
[96] |
LU L, TANG X, CAO R,
et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical kerr media with enhanced stability[J].
Advanced Optical Materials, 2017, 5(17): 1700301.
doi:10.1002/adom.201700301
|
[97] |
WANG SH X, YU H H, ZHANG H J,
et al. Broadband few-layer MoS
2saturable absorbers[J].
Advanced Materials, 2014, 26(21): 3538-3544.
doi:10.1002/adma.201306322
|
[98] |
ZHANG Y, WANG J J, BALLANTINE K E,
et al. Hybrid plasmonic nanostructures with unconventional nonlinear optical properties[J].
Advanced Optical Materials, 2014, 2(4): 331-337.
doi:10.1002/adom.201300503
|
[99] |
WANG F, ROZHIN A G, SCARDACI V,
et al. Wideband-tuneable, nanotube mode-locked, fibre laser[J].
Nature Nanotechnology, 2008, 3(12): 738-742.
doi:10.1038/nnano.2008.312
|
[100] |
BAO Q L, ZHANG H, NI ZH H,
et al. Monolayer graphene as a saturable absorber in a mode-locked laser[J].
Nano Research, 2011, 4(3): 297-307.
doi:10.1007/s12274-010-0082-9
|
[101] |
SU L M, FAN X, YIN T,
et al. Inorganic 2D luminescent materials: structure, luminescence modulation, and applications[J].
Advanced Optical Materials, 2020, 8(1): 1900978.
doi:10.1002/adom.201900978
|
[102] |
ZHENG J L, YANG ZH H, SI C,
et al. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability[J].
ACS Photonics, 2017, 4(6): 1466-1476.
doi:10.1021/acsphotonics.7b00231
|
[103] |
WANG X T, CUI Y, LI T,
et al. Recent advances in the functional 2D photonic and optoelectronic devices[J].
Advanced Optical Materials, 2019, 7(3): 1801274.
doi:10.1002/adom.201801274
|
[104] |
LEE Y J, YEH T W, ZOU CH,
et al. Graphene quantum dot vertical cavity surface-emitting lasers[J].
ACS Photonics, 2019, 6(11): 2894-2901.
doi:10.1021/acsphotonics.9b00976
|
[105] |
孙俊杰, 陈飞, 何洋, 等. 新型过渡金属硫化物在超快 中的应用[J]. 中国光学,2020,13(4):647-659.
doi:10.37188/CO.2019-0241
SUN J J, CHEN F, HE Y,
et al. Application of emerging transition metal dichalcogenides in ultrafast lasers[J].
Chinese Optics, 2020, 13(4): 647-659. (in Chinese)
doi:10.37188/CO.2019-0241
|
[106] |
YANG Y F, HU H W, WU M J,
et al. Stretchable and broadband cavity-free lasers based on all 2D metamaterials[J].
Advanced Optical Materials, 2020, 8(7): 1901326.
doi:10.1002/adom.201901326
|
[107] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q,
et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J].
Nature, 2014, 516(7529): 78-81.
doi:10.1038/nature13970
|
[108] |
DING L, WEI Y Y, LI L B,
et al. MXene molecular sieving membranes for highly efficient gas separation[J].
Nature Communications, 2018, 9: 155.
doi:10.1038/s41467-017-02529-6
|
[109] |
JIANG Q, WU CH SH, WANG ZH J,
et al. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit[J].
Nano Energy, 2018, 45: 266-272.
doi:10.1016/j.nanoen.2018.01.004
|
[110] |
HUANG D P, XIE Y, LU D ZH,
et al. Demonstration of a white laser with V
2C MXene-based quantum dots[J].
Advanced Materials, 2019, 31(24): 1901117.
|
[111] |
ZHANG H, ROGERS J A. Recent advances in flexible inorganic light emitting diodes: from materials design to integrated optoelectronic platforms[J].
Advanced Optical Materials, 2019, 7(2): 1800936.
doi:10.1002/adom.201800936
|
[112] |
LU G ZH, WU M J, LIN T N,
et al. Electrically pumped white-light-emitting diodes based on histidine-doped MoS
2quantum dots[J].
Small, 2019, 15(30): 1901908.
doi:10.1002/smll.201901908
|