Citation: | XU Fei, PAN Qi-kun, CHEN Fei, ZHANG Kuo, YU De-yang, HE Yang, SUN Jun-jie. Development progress of Fe2+:ZnSe lasers[J].Chinese Optics, 2021, 14(3): 458-469.doi:10.37188/CO.2020-0180 |
[1] |
王旭, 谢冀江, 潘其坤, 等. 非链式脉冲氟化氘 器的放电特性[J]. 发光学报,2015,36(9):1041-1046.
doi:10.3788/fgxb20153609.1041
WANG X, XIE J J, PAN Q K,
et al. Discharge characteristic of non-chain pulsed deuterium fluoride lasers[J].
Chinese Journal of Luminescence, 2015, 36(9): 1041-1046. (in Chinese)
doi:10.3788/fgxb20153609.1041
|
[2] |
阮鹏, 谢冀江, 张来明, 等. 紫外预电离放电引发的非链式脉冲DF 器[J]. 发光学报,2013,34(4):450-455.
doi:10.3788/fgxb20133404.0450
RUAN P, XIE J J, ZHANG L M,
et al. UV-preionized electric-discharge non-chain pulsed DF laser[J].
Chinese Journal of Luminescence, 2013, 34(4): 450-455. (in Chinese)
doi:10.3788/fgxb20133404.0450
|
[3] |
周华, 姚传飞, 贾志旭, 等. 中红外可调谐大能量飞秒脉冲 产生[J]. 发光学报,2020,41(4):435-441.
doi:10.3788/fgxb20204104.0435
ZHOU H, YAO CH F, JIA ZH X,
et al. Mid-infrared tunable high pulse energy femtosecond pulse laser generation[J].
Chinese Journal of Luminescence, 2020, 41(4): 435-441. (in Chinese)
doi:10.3788/fgxb20204104.0435
|
[4] |
程小劲, 李超, 徐飞, 等. Fe:ZnS/ZnSe中红外固体 器研究进展[J]. 技术,2018,42(2):151-155.
doi:10.7510/jgjs.issn.1001-3806.2018.02.002
CHEN X J, LI CH, XU F,
et al. Progress in Fe:ZnS/ZnSe middle-infrared solid-state lasers[J].
Laser Technology, 2018, 42(2): 151-155. (in Chinese)
doi:10.7510/jgjs.issn.1001-3806.2018.02.002
|
[5] |
DELOACH L D, PAGE R H, WILKE G D,
et al. Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media[J].
IEEE Journal of Quantum Electronics, 1996, 32(6): 885-895.
doi:10.1109/3.502365
|
[6] |
ADAMS J J, BIBEAU C, PAGE R H,
et al. 4.0-4.5- μm lasing of Fe: ZnSe below 180 K, a new mid-infrared laser material[J].
Optics Letters, 1999, 24(23): 1720-1720.
doi:10.1364/OL.24.001720
|
[7] |
陈媛芝, 张乐, 黄存新, 等. TM
2+: Ⅱ-Ⅵ族中红外 材料[J]. 化学进展,2015,27(5):511-521.
CHEN Y ZH, ZHANG L, HUANG C X,
et al. TM
2+: Ⅱ-Ⅵ mid-infrared materials[J].
Progress in Chemistry, 2015, 27(5): 511-521. (in Chinese)
|
[8] |
潘其坤, 谢冀江, 陈飞, 等. 中红外室温大能量Fe
2+:ZnSe 器[J]. 中国 ,2018,45(11):1101001.
doi:10.3788/CJL201845.1101001
PAN Q K, XIE J J, CHEN F,
et al. Mid-infrared high energy Fe
2+:ZnSe laser at room temperature[J].
Chinese Journal of Lasers, 2018, 45(11): 1101001. (in Chinese)
doi:10.3788/CJL201845.1101001
|
[9] |
潘其坤. 中红外固体 器研究进展[J]. 中国光学,2015,8(4):557-566.
doi:10.3788/co.20150804.0557
PAN Q K. Progress of mid-infrared solid-state laser[J].
Chinese Optics, 2015, 8(4): 557-566. (in Chinese)
doi:10.3788/co.20150804.0557
|
[10] |
孙骁, 韩隆, 王克强. 直接抽运中红外固体 器研究进展[J]. 与光电子学进展,2017,54(5):050007.
SUN X, HAN L, WANG K Q. Progress in directly pumping of mid-infrared solid-state lasers[J].
Laser&
Optoelectronics Progress, 2017, 54(5): 050007. (in Chinese)
|
[11] |
KERNAL J, FEDOROV V V, GALLIAN A,
et al. 3.9−4.8 μm gain-switched lasing of Fe:ZnSe at room temperature[J].
Optics Express, 2005, 13(26): 10608-10615.
doi:10.1364/OPEX.13.010608
|
[12] |
MIROV S B, FEDOROV V V, MARTYSHKIN D V,
et al. Mid-IR gain media based on transition metal-doped II-VI chalcogenides[J].
Proceedings of SPIE, 2016, 9744: 97440A.
|
[13] |
XIE R SH, ZHANG X Q, LIU H F. Ligand-assisted fabrication, structure, and luminescence properties of Fe:ZnSe quantum dots[J].
Materials Science and Engineering:
B, 2014, 182: 86-91.
doi:10.1016/j.mseb.2013.11.023
|
[14] |
LANCASTER A, COOK G, MCDANIEL S A, et al.. Fe:ZnSe channel waveguide laser operating at 4122 nm[C].
Proceedings of Science and Innovations 2015. Optical Society of America, 2015.
|
[15] |
NING S G, FENG G Y, ZHANG H,
et al. Fabrication, structure and optical application of Fe
2+:ZnSe nanocrystalline film[J].
Optical Materials, 2019, 89: 473-479.
doi:10.1016/j.optmat.2019.02.002
|
[16] |
IKESUE A, AUNG Y L. Ceramic laser materials[J].
Nature Photonics, 2008, 2(12): 721-727.
doi:10.1038/nphoton.2008.243
|
[17] |
ZHOU T Y, ZHANG L, WEI SH,
et al. MgO assisted densification of highly transparent YAG ceramics and their microstructural evolution[J].
Journal of the European Ceramic Society, 2017, 38(2): 687-693.
|
[18] |
YU SH Q, CARLONI D, WU Y Q. Microstructure development and optical properties of Fe:ZnSe transparent ceramics sintered by spark plasma sintering[J].
Journal of the American Ceramic Society, 2020, 103(8): 4159-4166.
doi:10.1111/jace.17144
|
[19] |
许毅, 吴玉松, 姜本学, 等. 国产Yb:YAG透明陶瓷实现 输出[J]. 中国 ,2007,34(1):60.
doi:10.3321/j.issn:0258-7025.2007.01.027
XU Y, WU Y S, JIANG B X,
et al. Laser output of domestic Yb: YAG transparent ceramics[J].
Chinese Journal of Lasers, 2007, 34(1): 60. (in Chinese)
doi:10.3321/j.issn:0258-7025.2007.01.027
|
[20] |
胡家乐, 王汇霖, 梁晰童, 等. 材料多尺度结晶研究进展[J]. 中国科学: 技术科学,2020,50(6):650-666.
doi:10.1360/SST-2019-0417
HU J L, WANG H L, LIANG X T,
et al. Progress of multiscale materials crystallization[J].
SCIENTIA SINICA Technologica, 2020, 50(6): 650-666. (in Chinese)
doi:10.1360/SST-2019-0417
|
[21] |
HE Y H, MATEI L, JUNG H J,
et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr
3single crystals[J].
Nature Communications, 2018, 9(1): 1609.
doi:10.1038/s41467-018-04073-3
|
[22] |
YIN L Y, JIE W Q, WANG T,
et al. The effects of ACRT on the growth of ZnTe crystal by the temperature gradient solution growth technique[J].
Crystals, 2017, 7(3): 82.
doi:10.3390/cryst7030082
|
[23] |
SEKHON M, LENT B, DOST S. Numerical study of liquid phase diffusion growth of SiGe subjected to accelerated crucible rotation[J].
Journal of Crystal Growth, 2016, 438: 90-98.
doi:10.1016/j.jcrysgro.2015.12.043
|
[24] |
LIN G, BAO J, XU ZH J. A three-dimensional phase field model coupled with a lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field[J].
Computers&
Fluids, 2014, 103: 204-214.
|
[25] |
LYUBIMOVA T P, PARSHAKOVA Y N. Numerical investigation of heat and mass transfer during vertical Bridgman crystal growth under rotational vibrations[J].
Journal of Crystal Growth, 2014, 385: 82-87.
doi:10.1016/j.jcrysgro.2013.04.063
|
[26] |
KOZLOVSKY V I, AKIMOV V A, Frolov M P,
et al. Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase[J].
Physica Status Solidi(
B)
|
[27] |
FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I,
et al. Study of a room temperature, monocrystalline Fe: ZnSe laser, pumped by a high-energy, free-running Er: YAG laser[J].
Laser Physics, 2019, 29(8): 085004.
doi:10.1088/1555-6611/ab2be3
|
[28] |
魏乃光, 蒋立朋, 李冬旭, 等. 化学气相沉积法制备ZnSe多晶材料的缺陷研究[J]. 人工晶体学报,2020,49(1):152-157.
WEI N G, JIANG L P, LI D X,
et al. Study on the defects of ZnSe polycrystalline materials prepared by chemical vapor deposition method[J].
Journal of Synthetic Crystals, 2020, 49(1): 152-157. (in Chinese)
|
[29] |
王锋, 常芳娥, 坚增运, 等. ZnSe晶体制备的工艺研究[J]. 西安工业学院学报,2005,25(1):61-63, 67.
WANG F, CHANG F E, JIAN Z Y,
et al. Preparation of ZnSe crystal from pure Zn and Se[J].
Journal of Xi'an Institute of Technology, 2005, 25(1): 61-63, 67. (in Chinese)
|
[30] |
AVETISOV R I, BALABANOV S S, FIRSOV K N,
et al. Hot-pressed production and laser properties of ZnSe: Fe
2+[J].
Journal of Crystal Growth, 2018, 491: 36-41.
doi:10.1016/j.jcrysgro.2018.03.025
|
[31] |
BALABANOV S S, FIRSOV K N, GAVRISHCHUK E M,
et al. Laser properties of Fe
2+:ZnSe fabricated by solid-state diffusion bonding[J].
Laser Physics Letters, 2018, 15(4): 045806.
doi:10.1088/1612-202X/aaa93f
|
[32] |
BALABANOV S S, FIRSOV K N, GAVRISHCHUK E M,
et al. Room-temperature lasing on Fe2
+:ZnSe with meniscus inner doped layer fabricated by solid-state diffusion bonding[J].
Laser Physics Letters, 2019, 16(5): 055004.
doi:10.1088/1612-202X/ab09e8
|
[33] |
FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B,
et al. The energy and spectral characteristics of a room-temperature pulsed laser on a ZnS:Fe
2+polycrystal[J].
Laser Physics Letters, 2016, 13(4): 045004.
doi:10.1088/1612-2011/13/4/045004
|
[34] |
FIRSOV K N, FROLOV M P, GAVRISHCHUK E M,
et al. Laser on single-crystal ZnSe:Fe
2+with high pulse radiation energy at room temperature[J].
Laser Physics Letters, 2016, 13(1): 015002.
doi:10.1088/1612-2011/13/1/015002
|
[35] |
FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B,
et al. Room-temperature laser on a ZnSe:Fe
2+polycrystal with undoped faces, excited by an electrodischarge HF laser[J].
Laser Physics Letters, 2016, 13(5): 055002.
doi:10.1088/1612-2011/13/5/055002
|
[36] |
FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B,
et al. CVD-grown Fe
2+:ZnSe polycrystals for laser applications[J].
Laser Physics Letters, 2017, 14(5): 055805.
doi:10.1088/1612-202X/aa66fb
|
[37] |
FIRSOV K N, GAVRISHCHUK E M, IKONNIKOV V B,
et al. High-energy room-temperature Fe
2+:ZnS laser[J].
Laser Physics Letters, 2016, 13(1): 015001.
doi:10.1088/1612-2011/13/1/015001
|
[38] |
FIRSOV K N, GAVRISHCHUK E M, KAZANTSEV S Y,
et al. Increasing the radiation energy of ZnSe:Fe
2+laser at room temperature[J].
Laser Physics Letters, 2014, 11(8): 085001.
doi:10.1088/1612-2011/11/8/085001
|
[39] |
FIRSOV K N, GAVRISHCHUK E M, KAZANTSEV S Y,
et al. Spectral and temporal characteristics of a ZnSe:Fe
2+laser pumped by a non-chain HF(DF) laser at room temperature[J].
Laser Physics Letters, 2014, 11(12): 125004.
doi:10.1088/1612-2011/11/12/125004
|
[40] |
FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I,
et al.. Efficient 10-J pulsed Fe:ZnSe laser at 4100 nm[C].
Proceedings of 2016 International Conference Laser Optics, IEEE, 2016.
|
[41] |
FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I,
et al. Study of a 2-J pulsed Fe:ZnSe 4- μm laser[J].
Laser Physics Letters, 2013, 10(12): 125001.
doi:10.1088/1612-2011/10/12/125001
|
[42] |
GALLIAN A, FEDOROV V V, MIROV S B,
et al. Hot-pressed ceramic Cr
2+:ZnSe gain-switched laser[J].
Optics Express, 2006, 14(24): 11694-11701.
doi:10.1364/OE.14.011694
|
[43] |
MIROV S B, FEDOROV V V, MOSKALEV I S,
et al. Recent progress in transition-metal-doped II–VI Mid-IR lasers[J].
IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 810-822.
doi:10.1109/JSTQE.2007.896634
|
[44] |
EVANS J W, BERRY P A, SCHEPLER K L. 840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm[J].
Optics Letters, 2012, 37(23): 5021-5023.
doi:10.1364/OL.37.005021
|
[45] |
MIROV S, FEDOROV V, MARTYSHKIN D, et al.. High average power Fe: ZnSe and Cr:ZnSe Mid-IR Solid state lasers[C].
Proceedings of Advanced Solid State Lasers 2015, Optical Society of America, 2015.
|
[46] |
VORONOV A A, KOZLOVSKII V I, KOROSTELIN Y V,
et al. Laser parameters of a Fe:ZnSe crystal in the 85-255-K temperature range[J].
Quantum Electronics, 2007, 35(9): 809-812.
|
[47] |
LI Y Y, DAI T Y, DUAN X M,
et al. Fe:ZnSe laser pumped by a 2.93- μm Cr, Er: YAG laser[J].
Chinese Physics B, 2019, 28(6): 64203.
doi:10.1088/1674-1056/28/6/064203
|
[48] |
AKIMOV V A, VORONOV A A, KOZLOVSKII V I,
et al. Efficient lasing in a Fe
2+:ZnSe crystal at room temperature[J].
Quantum Electronics, 2006, 36(4): 299-301.
doi:10.1070/QE2006v036n04ABEH013139
|
[49] |
DOROSHENKO M E, JELÍNKOVÁ H, KORANDA P,
et al. Tunable mid-infrared laser properties of Cr
2+:ZnMgSe and Fe
2+:ZnSe crystals[J].
Laser Physics Letters, 2010, 7(1): 38-45.
doi:10.1002/lapl.200910111
|
[50] |
MYOUNG N, MARTYSHKIN D V, FEDOROV V V,
et al. Energy scaling of 4.3 μm room temperature Fe: ZnSe laser[J].
Optics Letters, 2011, 36(1): 94-96.
doi:10.1364/OL.36.000094
|
[51] |
FEDOROV V V, MARTYSHKIN D V, MIROV M, et al.. High energy 4.1−4.6 μm Fe:ZnSe laser[C].
Proceedings of Science and Innovations 2012, Optical Society of America, 2012.
|
[52] |
VELIKANOV S D, DANILOV V P, ZAKHAROV N G,
et al. Fe
2+:ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature[J].
Quantum Electronics, 2014, 44(2): 141-144.
doi:10.1070/QE2014v044n02ABEH015341
|
[53] |
MARTYSHKIN D V, FEDOROV V V, MIROV M,
et al.. High average power (35 W) pulsed Fe:ZnSe laser tunable over 3.8−4.2 µm[C].
Proceedings of the Science and Innovations 2015, Optical Society of America, 2015.
|
[54] |
VELIKANOV S D, ZARETSKY N A, ZOTOV E A,
et al. Room-temperature 1.2-J Fe
2+:ZnSe laser[J].
Quantum Electronics, 2016, 46(1): 11-12.
doi:10.1070/QE2016v046n01ABEH015940
|
[55] |
LI Y Y, YANG K, LIU G Y,
et al. 1 kHz nanosecond-pulsed room temperature Fe:ZnSe laser gain-switched by a ZnGeP
2optical parametric oscillator[J].
Chinese Optics Letters, 2019, 17(8): 081404.
doi:10.3788/COL201917.081404
|
[56] |
LI Y Y, JU Y L, DAI T Y,
et al. A gain-switched Fe:ZnSe laser pumped by a pulsed Ho, Pr: LLF laser[J].
Chinese Physics Letters, 2019, 36(4): 044201.
doi:10.1088/0256-307X/36/4/044201
|
[57] |
UEHARA H, TSUNAI T, HAN B,
et al. 40 kHz, 20 ns acousto-optically
Q-switched 4 μm Fe:ZnSe laser pumped by a fluoride fiber laser[J].
Optics Letters, 2020, 45(10): 2788-2791.
doi:10.1364/OL.391365
|
[58] |
PAN Q K, XIE J J, CHEN F,
et al. Transversal parasitic oscillation suppression in high gain pulsed Fe
2+:ZnSe laser at room temperature[J].
Optics&
Laser Technology, 2020, 127: 106151.
|
[59] |
FEDOROV V V, MARTYSHKIN D, KARKI K,
et al. Q-switched and gain-switched Fe:ZnSe lasers tunable over 3.60-5.15 µm[J].
Optics Express, 2019, 27(10): 13934-13941.
doi:10.1364/OE.27.013934
|
[60] |
EVANS J W, BERRY P A, SCHEPLER K L. A passively
Q-switched, CW-pumped Fe:ZnSe laser[J].
IEEE Journal of Quantum Electronics, 2014, 50(3): 204-209.
doi:10.1109/JQE.2014.2302233
|
[61] |
PUSHKIN A V, MIGAL E A, TOKITA S,
et al. Femtosecond graphene mode-locked Fe:ZnSe laser at 4.4 µm[J].
Optics Letters, 2020, 45(3): 738-741.
doi:10.1364/OL.384300
|