Volume 14Issue 2
Mar. 2021
Turn off MathJax
Article Contents
DANG Wen-jia, LI Zhe, LU Na, LI Yu-ting, ZHANG Lei, TIAN Xiao. Research progress of 0.9 ~ 1.0 μm near-infrared continuous-wave fiber lasers[J]. Chinese Optics, 2021, 14(2): 264-274. doi: 10.37188/CO.2020-0193
Citation: DANG Wen-jia, LI Zhe, LU Na, LI Yu-ting, ZHANG Lei, TIAN Xiao. Research progress of 0.9 ~ 1.0 μm near-infrared continuous-wave fiber lasers[J].Chinese Optics, 2021, 14(2): 264-274.doi:10.37188/CO.2020-0193

Research progress of 0.9 ~ 1.0 μm near-infrared continuous-wave fiber lasers

doi:10.37188/CO.2020-0193
Funds:Supported by the Natural Science Basic Research Program of Shaanxi (No. 2019JQ-914); Innovation Capability Support Program of Shaanxi (No. 2019KRM093); Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 17JK0394, No. 19JK0429); Key Research and Development Program Fund of Shaanxi Science and Technology Department (No. 2018ZDXM-GY-051)
More Information
  • Corresponding author:wenjia_dang@126.com
  • Received Date:27 Oct 2020
  • Rev Recd Date:09 Dec 2020
  • Available Online:01 Mar 2021
  • Publish Date:23 Mar 2021
  • Near-infrared continuous-wave fiber lasers with wavelengths of 0.9~1.0 μm have important application prospects in the fields of high-power blue and ultraviolet laser generation, high-power single-mode pump sources, biomedicine and lidars. They have thus become a heavily researched topic in recent years. At present, their gain mechanisms mainly include a rare earth ion gain or a nonlinear effect gain. In this paper, the research progress of 0.9~1.0 μm fiber lasers based on these two kinds of gain mechanisms are reviewed in detail, and the technical bottlenecks and solutions of these lasers are analyzed. Furthermore, the potential directions for the future of their research are proposed.

  • loading
  • [1]
    JAUREGUI C, LIMPERT J, TÜNNERMANN A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi:10.1038/nphoton.2013.273
    [2]
    ZERVAS M N. High power ytterbium-doped fiber lasers—fundamentals and applications[J]. International Journal of Modern Physics B, 2014, 28(12): 1442009. doi:10.1142/S0217979214420090
    [3]
    党文佳, 李哲, 李玉婷, 等. 高功率连续波掺镱光纤 器研究进展[J]. 中国光学,2020,13(4):676-694. doi:10.37188/CO.2019-0208

    DANG W J, LI ZH, LI Y T, et al. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J]. Chinese Optics, 2020, 13(4): 676-694. (in Chinese) doi:10.37188/CO.2019-0208
    [4]
    LIN H Q, FENG Y J, FENG Y T, et al. 656 W Er-doped, Yb-free large-core fiber laser[J]. Optics Letters, 2018, 43(13): 3080-3083. doi:10.1364/OL.43.003080
    [5]
    EHRENREICH T, LEVEILLE R, MAJID I, et al. 1-kW, all-glass Tm: fiber laser[J]. Proceedings of SPIE, 2010, 7580: 758016. doi:10.1117/12.842404
    [6]
    施旗, 程红, 吕景文, 等. 掺钕磷酸盐 玻璃的光谱特性[J]. 发光学报,2005,26(3):359-364. doi:10.3321/j.issn:1000-7032.2005.03.015

    SHI Q, CHENG H, LÜ J W, et al. Spectroscopic properties of Nd 3+-doped phosphate laser glasses[J]. Chinese Journal of Luminescence, 2005, 26(3): 359-364. (in Chinese) doi:10.3321/j.issn:1000-7032.2005.03.015
    [7]
    吴春婷, 常奥磊, 温雅, 等. 单掺Nd 3+双波长全固态 器研究进展[J]. 发光学报,2020,41(4):414-428. doi:10.3788/fgxb20204104.0414

    WU CH T, CHANG A L, WEN Y, et al. Research progress of Nd 3+-doped dual-wavelength all-solid-state laser[J]. Chinese Journal of Luminescence, 2020, 41(4): 414-428. (in Chinese) doi:10.3788/fgxb20204104.0414
    [8]
    TER-MIKIRTYCHEV V. Fundamentals of Fiber Lasers and Fiber Amplifiers[M]. Cham: Springer, 2014.
    [9]
    ALCOCK I P, FERGUSON A I, HANNA D C, et al. Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9 μm on the 4F 324I 92transition[J]. Optics Communications, 1986, 58(6): 405-408. doi:10.1016/0030-4018(86)90319-6
    [10]
    SOH D B S, YOO S W, NILSSON J, et al.. Cladding pumped Nd-doped fiber laser tunable from 908 to 938 nm[C]. Proceedings of Conference on Lasers and Electro-Optics, IEEE, 2004.
    [11]
    LAROCHE M, CADIER B, GILLES H, et al. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm[J]. Optics Letters, 2013, 38(16): 3065-3067. doi:10.1364/OL.38.003065
    [12]
    LECONTE B, CADIER B, GILLES H, et al. Extended tunability of Nd-doped fiber lasers operating at 872~936 nm[J]. Optics Letters, 2015, 40(17): 4098-4101. doi:10.1364/OL.40.004098
    [13]
    PAX P H, KHITROV V V, DRACHENBERG D R, et al. Scalable waveguide design for three-level operation in neodymium doped fiber laser[J]. Optics Express, 2016, 24(25): 28633-28647. doi:10.1364/OE.24.028633
    [14]
    BARNINI A, LE CORRE K, KERVELLA L, et al. Low numerical aperature large-mode-area neodymium-doped fibers fabricated by SPCVD and ASD for laser operation near 920 nm[J]. Proceedings of SPIE, 2020, 11276: 112760L.
    [15]
    DÉLEN X, MARTIAL I, DIDIERJEAN J, et al. 34 W continuous wave Nd∶YAG single crystal fiber laser emitting at 946 nm[J]. Applied Physics B, 2011, 104(1): 1.
    [16]
    住村和彦, 西浦匡则. 图解光纤 器入门[M]. 宋鑫, 译. 北京: 机械工业出版社, 2013: 74-84.

    KAZUHIKO, SUMIMURA. Graphical Introduction to Fiber Lasers[M]. SONG X, trans. Beijing: China Machine Press, 2013: 74-84. (in Chinese)
    [17]
    李海清, 廖雷, 刘超平, 等. 短波长输出的掺镱光纤及其 器研究[J]. 华中科技大学学报(自然科学版),2017,45(6):5-9.

    LI H Q, LIAO L, LIU CH P, et al. Study on Yb-doped fiber of short-wavelength and its lasers[J]. Journal of Huazhong University of Science and Technology( Nature Science Edition) , 2017, 45(6): 5-9. (in Chinese)
    [18]
    张雪霞, 葛廷武, 丁星, 等. 分布式抽运连续光纤 器研究[J]. 发光学报,2016,37(9):1071-1075. doi:10.3788/fgxb20163709.1071

    ZHANG X X, GE T W, DING X, et al. Study of continuous fiber laser with distributed pump structure[J]. Chinese Journal of Luminescence, 2016, 37(9): 1071-1075. (in Chinese) doi:10.3788/fgxb20163709.1071
    [19]
    HANNA D C, PERCIVAL R M, PERRY I R, et al. An ytterbium-doped monomode fibre laser: broadly tunable operation from 1·010 μm to 1·162 μm and three-level operation at 974 nm[J]. Journal of Modern Optics, 1990, 37(4): 517-525. doi:10.1080/09500349014550601
    [20]
    ZENTENO L A, MINELLY J D, DEJNEKA M, et al.. 0.65 W single-mode Yb-fiber laser at 980 nm pumped by 1.1 W Nd∶YAG[C]. Proceedings of Advanced Solid State Lasers 2000, Optical Society of America, 2000: MD7.
    [21]
    ZOU S, LI P, WANG L, et al. 980 nm Yb-doped single-mode fiber laser and its frequency-doubling with BIBO[J]. Applied Physics B, 2009, 95(4): 685-690. doi:10.1007/s00340-009-3511-2
    [22]
    BARTOLACCI C, LAROCHE M, GILLES H, et al.. All-fiber Yb-doped CW and pulsed laser sources operating near 980 nm[C]. Proceedings of Advanced Solid-State Photonics 2011, Optical Society of America, 2011: ATuB9.
    [23]
    王争, 闫明鉴, 尹路, 等. 不同角度包层光剥离的理论与实验研究[J]. 中国光学,2019,12(5):1124-1130. doi:10.3788/CO.20191205.1124

    WANG ZH, YAN M J, YIN L, et al. Stripping of cladding light at different angles: theoretical and experimental studies[J]. Chinese Optics, 2019, 12(5): 1124-1130. (in Chinese) doi:10.3788/CO.20191205.1124
    [24]
    WANG Y SH, KE W W, MA Y, et al. The design and experiment research of high brightness all-fiberized ytterbium doped laser operating near 980 nm[J]. Proceedings of SPIE, 2015, 9671: 96710U.
    [25]
    YU Y, AN Y Y, CAO J Q, et al. Experimental study on all-fiberized continuous-wave Yb-doped fiber amplifier operating near 980 nm[J]. IEEE Photonics Technology Letters, 2016, 28(4): 398-401. doi:10.1109/LPT.2015.2496623
    [26]
    杜赫庭, 刘爱民, 曹涧秋, 等. 自主研发的976 nm波段全光纤 器实现了100 W量级功率输出[J]. 强 与粒子束,2019,31(10):72.

    DU H T, LIU A M, CAO J Q, et al. The self-developed 976 nm all-fiber laser achieves 100 W output power[J]. High Power Laser and Particle Beams, 2019, 31(10): 72. (in Chinese)
    [27]
    李平雪, 张月. 980 nm掺镱光纤 器综述[J]. 与光电子学进展,2017,54(7):36-47.

    LI P X, ZHANG Y. Review of 980 nm Yb-doped fiber laser[J]. Laser& Optoelectronics Progress, 2017, 54(7): 36-47. (in Chinese)
    [28]
    SELVAS R, SAHU J K, FU L B, et al. High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm[J]. Optics Letters, 2003, 28(13): 1093-1095. doi:10.1364/OL.28.001093
    [29]
    YLÄ-JARKKO K H, SELVAS R, SOH D B S, et al.. A 3.5 W 977 nm cladding-pumped jacketed air-clad ytterbium-doped fiber laser[C]. Proceedings of Advanced Solid-State Photonics 2003, Optical Society of America, 2003: 103.
    [30]
    RÖSER F, JAUREGUI C, LIMPERT J, et al. 94 W 980 nm high brightness Yb-doped fiber laser[J]. Optics Express, 2008, 16(22): 17310-17318. doi:10.1364/OE.16.017310
    [31]
    BOULLET J, ZAOUTER Y, DESMARCHELIER R, et al. High power ytterbium-doped rod-type three-level photonic crystal fiber laser[J]. Optics Express, 2008, 16(22): 17891-17902. doi:10.1364/OE.16.017891
    [32]
    ROYON R, LHERMITE J, SARGER L, et al. High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm[J]. Optics Express, 2013, 21(11): 13818-13823. doi:10.1364/OE.21.013818
    [33]
    LI P X, ZHANG X X, LIU ZH, et al. Large-mode-area double-cladding photonic crystal fiber laser in the watt range at 980 nm[J]. Chinese Physics Letters, 2011, 28(8): 084206. doi:10.1088/0256-307X/28/8/084206
    [34]
    HE J, WANG Z W, WU W D, et al. Short-length large-mode-area photonic crystal fiber laser operating at 978 nm[J]. Proceedings of SPIE, 2012, 8796: 87961V.
    [35]
    LEICH M, JÄGER M, GRIMM S, et al. Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power[J]. Laser Physics Letters, 2014, 11(4): 045102. doi:10.1088/1612-2011/11/4/045102
    [36]
    ALESHKINA S S, LEVCHENKO A E, MEDVEDKOV O I, et al. Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser[J]. IEEE Photonics Technology Letters, 2018, 30(1): 127-130. doi:10.1109/LPT.2017.2778305
    [37]
    GU G CH, KONG F T, HAWKINS T, et al. Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers[J]. Optics Express, 2014, 22(11): 13962-13968. doi:10.1364/OE.22.013962
    [38]
    MATNIYAZ T, KALICHEVSKY-DONG M T, HAWKINS T W, et al.. Single-mode Yb-doped Double-clad All-solid Photonic Bandgap Fiber Laser Generating 27.8 W at 976 nm[C]. Proceedings of Advanced Solid State Lasers 2018, Optical Society of America, 2018: AM6A.28.
    [39]
    LI W S, MATNIYAZ T, GAFSI S, et al. 151 W monolithic diffraction-limited Yb-doped photonic bandgap fiber laser at ~978 nm[J]. Optics Express, 2019, 27(18): 24972-24977. doi:10.1364/OE.27.024972
    [40]
    VALERO N, FERAL C, LHERMITE J, et al.. 29 W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime[C]. Proceedings of 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, IEEE, 2019: 1-1.
    [41]
    VALERO N, FERAL C, LHERMITE J, et al. 39 W narrow spectral linewidth monolithic ytterbium-doped fiber MOPA system operating at 976 nm[J]. Optics Letters, 2020, 45(6): 1495-1498. doi:10.1364/OL.380713
    [42]
    黄振鹏. 978 nm单频光纤 器及其倍频研究[D]. 广州: 华南理工大学, 2018.

    HUANG ZH P. Research on the single-frequency fiber laser at 978 nm and its frequency doubling[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
    [43]
    ZHU X SH, SHI W, ZONG J, et al. 976 nm single-frequency distributed Bragg reflector fiber laser[J]. Optics Letters, 2012, 37(20): 4167-4169. doi:10.1364/OL.37.004167
    [44]
    ZHU X SH, ZHU G W, SHI W, et al. 976 nm single-polarization single-frequency ytterbium-doped phosphate fiber amplifiers[J]. IEEE Photonics Technology Letters, 2013, 25(14): 1365-1368. doi:10.1109/LPT.2013.2266113
    [45]
    WU J W, ZHU X SH, TEMYANKO V, et al.. Power scaling of single-frequency fiber amplifiers at 976 nm[C]. Proceedings of Science and Innovations 2016, Optical Society of America, 2016: SM1Q.5.
    [46]
    WU J W, ZHU X SH, TEMYANKO V, et al. Yb 3+-doped double-clad phosphate fiber for 976 nm single-frequency laser amplifiers[J]. Optical Materials Express, 2017, 7(4): 1310-1316. doi:10.1364/OME.7.001310
    [47]
    WU J, ZHU X, WEI H, et al. Power scalable 10 W 976 nm single-frequency linearly polarized laser source[J]. Optics Letters, 2018, 43(4): 951-954. doi:10.1364/OL.43.000951
    [48]
    冯衍, 姜华卫, 张磊. 高功率拉曼光纤 器技术研究进展[J]. 中国 ,2017,44(2):0201005. doi:10.3788/CJL201744.0201005

    FENG Y, JIANG H W, ZHANG L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 2017, 44(2): 0201005. (in Chinese) doi:10.3788/CJL201744.0201005
    [49]
    KABLUKOV S I, DONTSOVA E I, ZLOBINA E A, et al. An LD-pumped Raman fiber laser operating below 1 μm[J]. Laser Physics Letters, 2013, 10(8): 085103. doi:10.1088/1612-2011/10/8/085103
    [50]
    ZLOBINA E A, KABLUKOV S I, SKVORTSOV M I, et al. 954 nm Raman fiber laser with multimode laser diode pumping[J]. Laser Physics Letters, 2016, 13(3): 035102. doi:10.1088/1612-2011/13/3/035102
    [51]
    ZLOBINA E A, KABLUKOV S I, WOLF A A, et al. Nearly single-mode Raman lasing at 954 nm in a graded-index fiber directly pumped by a multimode laser diode[J]. Optics Letters, 2017, 42(1): 9-12. doi:10.1364/OL.42.000009
    [52]
    ZLOBINA E A, KABLUKOV S I, WOLF A A, et al. Generating high-quality beam in a multimode LD-pumped all-fiber Raman laser[J]. Optics Express, 2017, 25(11): 12581-12587. doi:10.1364/OE.25.012581
    [53]
    EVMENOVA E A, KABLUKOV S I, NEMOV I N, et al. High-efficiency LD-pumped all-fiber Raman laser based on a 100 μm core graded-index fiber[J]. Laser Physics Letters, 2018, 15(9): 095101. doi:10.1088/1612-202X/aacca7
    [54]
    KUZNETSOV A G, KABLUKOV S I, WOLF A A, et al. 976 nm all-fiber Raman laser with high beam quality at multimode laser diode pumping[J]. Laser Physics Letters, 2019, 16(10): 105102. doi:10.1088/1612-202X/ab4281
    [55]
    TURITSYN S K, BABIN S A, EI-TAHER A E, et al. Random distributed feedback fibre laser[J]. Nature Photonics, 2010, 4(4): 231-235. doi:10.1038/nphoton.2010.4
    [56]
    FOTIADI A A. An incoherent fibre laser[J]. Nature Photonics, 2010, 4(4): 204-205. doi:10.1038/nphoton.2010.76
    [57]
    SUGAVANAM S, SOROKINA M, CHURKIN D V. Spectral correlations in a random distributed feedback fibre laser[J]. Nature Communications, 2017, 8: 15514. doi:10.1038/ncomms15514
    [58]
    OGORODNIKOV L L, VERGELES S S. Intensity statistics in a long random fiber Raman laser[J]. Optics Letters, 2018, 43(4): 651-654. doi:10.1364/OL.43.000651
    [59]
    ZHANG H W, HUANG L, SONG J X, et al. Quasi-kilowatt random fiber laser[J]. Optics Letters, 2019, 44(11): 2613-2616. doi:10.1364/OL.44.002613
    [60]
    ZHANG L, JIANG H W, YANG X Z, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 2017, 7: 42611. doi:10.1038/srep42611
    [61]
    饶云江. 光纤随机 器及其应用研究进展[J]. 光子学报,2019,48(11):1148002. doi:10.3788/gzxb20194811.1148002

    RAO Y J. Research advances of random fiber lasers and its applications[J]. Acta Photonica Sinica, 2019, 48(11): 1148002. (in Chinese) doi:10.3788/gzxb20194811.1148002
    [62]
    ZHANG L, WANG CH, LI ZH Y, et al. High-efficiency Brillouin random fiber laser using all-polarization maintaining ring cavity[J]. Optics Express, 2017, 25(10): 11306-11314. doi:10.1364/OE.25.011306
    [63]
    BABIN S A, DONTSOVA E I, KABLUKOV S I. Random fiber laser directly pumped by a high-power laser diode[J]. Optics Letters, 2013, 38(17): 3301-3303. doi:10.1364/OL.38.003301
    [64]
    EVMENOVA E A, KUZNETSOV A G, NEMOV I N, et al. 2nd-order random lasing in a multimode diode-pumped graded-index fiber[J]. Scientific Reports, 2018, 8(1): 17495. doi:10.1038/s41598-018-35767-9
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)/Tables(1)

    Article views(1636) PDF downloads(235) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map