Citation: | DANG Wen-jia, LI Zhe, LU Na, LI Yu-ting, ZHANG Lei, TIAN Xiao. Research progress of 0.9 ~ 1.0 μm near-infrared continuous-wave fiber lasers[J].Chinese Optics, 2021, 14(2): 264-274.doi:10.37188/CO.2020-0193 |
[1] |
JAUREGUI C, LIMPERT J, TÜNNERMANN A. High-power fibre lasers[J].
Nature Photonics, 2013, 7(11): 861-867.
doi:10.1038/nphoton.2013.273
|
[2] |
ZERVAS M N. High power ytterbium-doped fiber lasers—fundamentals and applications[J].
International Journal of Modern Physics B, 2014, 28(12): 1442009.
doi:10.1142/S0217979214420090
|
[3] |
党文佳, 李哲, 李玉婷, 等. 高功率连续波掺镱光纤 器研究进展[J]. 中国光学,2020,13(4):676-694.
doi:10.37188/CO.2019-0208
DANG W J, LI ZH, LI Y T,
et al. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J].
Chinese Optics, 2020, 13(4): 676-694. (in Chinese)
doi:10.37188/CO.2019-0208
|
[4] |
LIN H Q, FENG Y J, FENG Y T,
et al. 656 W Er-doped, Yb-free large-core fiber laser[J].
Optics Letters, 2018, 43(13): 3080-3083.
doi:10.1364/OL.43.003080
|
[5] |
EHRENREICH T, LEVEILLE R, MAJID I,
et al. 1-kW, all-glass Tm: fiber laser[J].
Proceedings of SPIE, 2010, 7580: 758016.
doi:10.1117/12.842404
|
[6] |
施旗, 程红, 吕景文, 等. 掺钕磷酸盐 玻璃的光谱特性[J]. 发光学报,2005,26(3):359-364.
doi:10.3321/j.issn:1000-7032.2005.03.015
SHI Q, CHENG H, LÜ J W,
et al. Spectroscopic properties of Nd
3+-doped phosphate laser glasses[J].
Chinese Journal of Luminescence, 2005, 26(3): 359-364. (in Chinese)
doi:10.3321/j.issn:1000-7032.2005.03.015
|
[7] |
吴春婷, 常奥磊, 温雅, 等. 单掺Nd
3+双波长全固态 器研究进展[J]. 发光学报,2020,41(4):414-428.
doi:10.3788/fgxb20204104.0414
WU CH T, CHANG A L, WEN Y,
et al. Research progress of Nd
3+-doped dual-wavelength all-solid-state laser[J].
Chinese Journal of Luminescence, 2020, 41(4): 414-428. (in Chinese)
doi:10.3788/fgxb20204104.0414
|
[8] |
TER-MIKIRTYCHEV V.
Fundamentals of Fiber Lasers and Fiber Amplifiers[M]. Cham: Springer, 2014.
|
[9] |
ALCOCK I P, FERGUSON A I, HANNA D C,
et al. Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9 μm on the
4F
32→
4I
92transition[J].
Optics Communications, 1986, 58(6): 405-408.
doi:10.1016/0030-4018(86)90319-6
|
[10] |
SOH D B S, YOO S W, NILSSON J,
et al.. Cladding pumped Nd-doped fiber laser tunable from 908 to 938 nm[C].
Proceedings of Conference on Lasers and Electro-Optics,
IEEE, 2004.
|
[11] |
LAROCHE M, CADIER B, GILLES H,
et al. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm[J].
Optics Letters, 2013, 38(16): 3065-3067.
doi:10.1364/OL.38.003065
|
[12] |
LECONTE B, CADIER B, GILLES H,
et al. Extended tunability of Nd-doped fiber lasers operating at 872~936 nm[J].
Optics Letters, 2015, 40(17): 4098-4101.
doi:10.1364/OL.40.004098
|
[13] |
PAX P H, KHITROV V V, DRACHENBERG D R,
et al. Scalable waveguide design for three-level operation in neodymium doped fiber laser[J].
Optics Express, 2016, 24(25): 28633-28647.
doi:10.1364/OE.24.028633
|
[14] |
BARNINI A, LE CORRE K, KERVELLA L,
et al. Low numerical aperature large-mode-area neodymium-doped fibers fabricated by SPCVD and ASD for laser operation near 920 nm[J].
Proceedings of SPIE, 2020, 11276: 112760L.
|
[15] |
DÉLEN X, MARTIAL I, DIDIERJEAN J,
et al. 34 W continuous wave Nd∶YAG single crystal fiber laser emitting at 946 nm[J].
Applied Physics B, 2011, 104(1): 1.
|
[16] |
住村和彦, 西浦匡则. 图解光纤 器入门[M]. 宋鑫, 译. 北京: 机械工业出版社, 2013: 74-84.
KAZUHIKO, SUMIMURA.
Graphical Introduction to Fiber Lasers[M]. SONG X, trans. Beijing: China Machine Press, 2013: 74-84. (in Chinese)
|
[17] |
李海清, 廖雷, 刘超平, 等. 短波长输出的掺镱光纤及其 器研究[J]. 华中科技大学学报(自然科学版),2017,45(6):5-9.
LI H Q, LIAO L, LIU CH P,
et al. Study on Yb-doped fiber of short-wavelength and its lasers[J].
Journal of Huazhong University of Science and Technology(
Nature Science Edition)
|
[18] |
张雪霞, 葛廷武, 丁星, 等. 分布式抽运连续光纤 器研究[J]. 发光学报,2016,37(9):1071-1075.
doi:10.3788/fgxb20163709.1071
ZHANG X X, GE T W, DING X,
et al. Study of continuous fiber laser with distributed pump structure[J].
Chinese Journal of Luminescence, 2016, 37(9): 1071-1075. (in Chinese)
doi:10.3788/fgxb20163709.1071
|
[19] |
HANNA D C, PERCIVAL R M, PERRY I R,
et al. An ytterbium-doped monomode fibre laser: broadly tunable operation from 1·010 μm to 1·162 μm and three-level operation at 974 nm[J].
Journal of Modern Optics, 1990, 37(4): 517-525.
doi:10.1080/09500349014550601
|
[20] |
ZENTENO L A, MINELLY J D, DEJNEKA M,
et al.. 0.65 W single-mode Yb-fiber laser at 980 nm pumped by 1.1 W Nd∶YAG[C].
Proceedings of Advanced Solid State Lasers 2000,
Optical Society of America, 2000: MD7.
|
[21] |
ZOU S, LI P, WANG L,
et al. 980 nm Yb-doped single-mode fiber laser and its frequency-doubling with BIBO[J].
Applied Physics B, 2009, 95(4): 685-690.
doi:10.1007/s00340-009-3511-2
|
[22] |
BARTOLACCI C, LAROCHE M, GILLES H,
et al.. All-fiber Yb-doped CW and pulsed laser sources operating near 980 nm[C].
Proceedings of Advanced Solid-State Photonics 2011, Optical Society of America, 2011: ATuB9.
|
[23] |
王争, 闫明鉴, 尹路, 等. 不同角度包层光剥离的理论与实验研究[J]. 中国光学,2019,12(5):1124-1130.
doi:10.3788/CO.20191205.1124
WANG ZH, YAN M J, YIN L,
et al. Stripping of cladding light at different angles: theoretical and experimental studies[J].
Chinese Optics, 2019, 12(5): 1124-1130. (in Chinese)
doi:10.3788/CO.20191205.1124
|
[24] |
WANG Y SH, KE W W, MA Y,
et al. The design and experiment research of high brightness all-fiberized ytterbium doped laser operating near 980 nm[J].
Proceedings of SPIE, 2015, 9671: 96710U.
|
[25] |
YU Y, AN Y Y, CAO J Q,
et al. Experimental study on all-fiberized continuous-wave Yb-doped fiber amplifier operating near 980 nm[J].
IEEE Photonics Technology Letters, 2016, 28(4): 398-401.
doi:10.1109/LPT.2015.2496623
|
[26] |
杜赫庭, 刘爱民, 曹涧秋, 等. 自主研发的976 nm波段全光纤 器实现了100 W量级功率输出[J]. 强 与粒子束,2019,31(10):72.
DU H T, LIU A M, CAO J Q,
et al. The self-developed 976 nm all-fiber laser achieves 100 W output power[J].
High Power Laser and Particle Beams, 2019, 31(10): 72. (in Chinese)
|
[27] |
李平雪, 张月. 980 nm掺镱光纤 器综述[J]. 与光电子学进展,2017,54(7):36-47.
LI P X, ZHANG Y. Review of 980 nm Yb-doped fiber laser[J].
Laser&
Optoelectronics Progress, 2017, 54(7): 36-47. (in Chinese)
|
[28] |
SELVAS R, SAHU J K, FU L B,
et al. High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm[J].
Optics Letters, 2003, 28(13): 1093-1095.
doi:10.1364/OL.28.001093
|
[29] |
YLÄ-JARKKO K H, SELVAS R, SOH D B S,
et al.. A 3.5 W 977 nm cladding-pumped jacketed air-clad ytterbium-doped fiber laser[C].
Proceedings of Advanced Solid-State Photonics 2003, Optical Society of America, 2003: 103.
|
[30] |
RÖSER F, JAUREGUI C, LIMPERT J,
et al. 94 W 980 nm high brightness Yb-doped fiber laser[J].
Optics Express, 2008, 16(22): 17310-17318.
doi:10.1364/OE.16.017310
|
[31] |
BOULLET J, ZAOUTER Y, DESMARCHELIER R,
et al. High power ytterbium-doped rod-type three-level photonic crystal fiber laser[J].
Optics Express, 2008, 16(22): 17891-17902.
doi:10.1364/OE.16.017891
|
[32] |
ROYON R, LHERMITE J, SARGER L,
et al. High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm[J].
Optics Express, 2013, 21(11): 13818-13823.
doi:10.1364/OE.21.013818
|
[33] |
LI P X, ZHANG X X, LIU ZH,
et al. Large-mode-area double-cladding photonic crystal fiber laser in the watt range at 980 nm[J].
Chinese Physics Letters, 2011, 28(8): 084206.
doi:10.1088/0256-307X/28/8/084206
|
[34] |
HE J, WANG Z W, WU W D,
et al. Short-length large-mode-area photonic crystal fiber laser operating at 978 nm[J].
Proceedings of SPIE, 2012, 8796: 87961V.
|
[35] |
LEICH M, JÄGER M, GRIMM S,
et al. Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power[J].
Laser Physics Letters, 2014, 11(4): 045102.
doi:10.1088/1612-2011/11/4/045102
|
[36] |
ALESHKINA S S, LEVCHENKO A E, MEDVEDKOV O I,
et al. Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser[J].
IEEE Photonics Technology Letters, 2018, 30(1): 127-130.
doi:10.1109/LPT.2017.2778305
|
[37] |
GU G CH, KONG F T, HAWKINS T,
et al. Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers[J].
Optics Express, 2014, 22(11): 13962-13968.
doi:10.1364/OE.22.013962
|
[38] |
MATNIYAZ T, KALICHEVSKY-DONG M T, HAWKINS T W, et al.. Single-mode Yb-doped Double-clad All-solid Photonic Bandgap Fiber Laser Generating 27.8 W at 976 nm[C].
Proceedings of Advanced Solid State Lasers 2018,
Optical Society of America, 2018: AM6A.28.
|
[39] |
LI W S, MATNIYAZ T, GAFSI S,
et al. 151 W monolithic diffraction-limited Yb-doped photonic bandgap fiber laser at ~978 nm[J].
Optics Express, 2019, 27(18): 24972-24977.
doi:10.1364/OE.27.024972
|
[40] |
VALERO N, FERAL C, LHERMITE J,
et al.. 29 W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime[C].
Proceedings of 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference,
IEEE, 2019: 1-1.
|
[41] |
VALERO N, FERAL C, LHERMITE J,
et al. 39 W narrow spectral linewidth monolithic ytterbium-doped fiber MOPA system operating at 976 nm[J].
Optics Letters, 2020, 45(6): 1495-1498.
doi:10.1364/OL.380713
|
[42] |
黄振鹏. 978 nm单频光纤 器及其倍频研究[D]. 广州: 华南理工大学, 2018.
HUANG ZH P. Research on the single-frequency fiber laser at 978 nm and its frequency doubling[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
|
[43] |
ZHU X SH, SHI W, ZONG J,
et al. 976 nm single-frequency distributed Bragg reflector fiber laser[J].
Optics Letters, 2012, 37(20): 4167-4169.
doi:10.1364/OL.37.004167
|
[44] |
ZHU X SH, ZHU G W, SHI W,
et al. 976 nm single-polarization single-frequency ytterbium-doped phosphate fiber amplifiers[J].
IEEE Photonics Technology Letters, 2013, 25(14): 1365-1368.
doi:10.1109/LPT.2013.2266113
|
[45] |
WU J W, ZHU X SH, TEMYANKO V,
et al.. Power scaling of single-frequency fiber amplifiers at 976 nm[C].
Proceedings of Science and Innovations 2016,
Optical Society of America, 2016: SM1Q.5.
|
[46] |
WU J W, ZHU X SH, TEMYANKO V,
et al. Yb
3+-doped double-clad phosphate fiber for 976 nm single-frequency laser amplifiers[J].
Optical Materials Express, 2017, 7(4): 1310-1316.
doi:10.1364/OME.7.001310
|
[47] |
WU J, ZHU X, WEI H,
et al. Power scalable 10 W 976 nm single-frequency linearly polarized laser source[J].
Optics Letters, 2018, 43(4): 951-954.
doi:10.1364/OL.43.000951
|
[48] |
冯衍, 姜华卫, 张磊. 高功率拉曼光纤 器技术研究进展[J]. 中国 ,2017,44(2):0201005.
doi:10.3788/CJL201744.0201005
FENG Y, JIANG H W, ZHANG L. Advances in high power Raman fiber laser technology[J].
Chinese Journal of Lasers, 2017, 44(2): 0201005. (in Chinese)
doi:10.3788/CJL201744.0201005
|
[49] |
KABLUKOV S I, DONTSOVA E I, ZLOBINA E A,
et al. An LD-pumped Raman fiber laser operating below 1 μm[J].
Laser Physics Letters, 2013, 10(8): 085103.
doi:10.1088/1612-2011/10/8/085103
|
[50] |
ZLOBINA E A, KABLUKOV S I, SKVORTSOV M I,
et al. 954 nm Raman fiber laser with multimode laser diode pumping[J].
Laser Physics Letters, 2016, 13(3): 035102.
doi:10.1088/1612-2011/13/3/035102
|
[51] |
ZLOBINA E A, KABLUKOV S I, WOLF A A,
et al. Nearly single-mode Raman lasing at 954 nm in a graded-index fiber directly pumped by a multimode laser diode[J].
Optics Letters, 2017, 42(1): 9-12.
doi:10.1364/OL.42.000009
|
[52] |
ZLOBINA E A, KABLUKOV S I, WOLF A A,
et al. Generating high-quality beam in a multimode LD-pumped all-fiber Raman laser[J].
Optics Express, 2017, 25(11): 12581-12587.
doi:10.1364/OE.25.012581
|
[53] |
EVMENOVA E A, KABLUKOV S I, NEMOV I N,
et al. High-efficiency LD-pumped all-fiber Raman laser based on a 100 μm core graded-index fiber[J].
Laser Physics Letters, 2018, 15(9): 095101.
doi:10.1088/1612-202X/aacca7
|
[54] |
KUZNETSOV A G, KABLUKOV S I, WOLF A A,
et al. 976 nm all-fiber Raman laser with high beam quality at multimode laser diode pumping[J].
Laser Physics Letters, 2019, 16(10): 105102.
doi:10.1088/1612-202X/ab4281
|
[55] |
TURITSYN S K, BABIN S A, EI-TAHER A E,
et al. Random distributed feedback fibre laser[J].
Nature Photonics, 2010, 4(4): 231-235.
doi:10.1038/nphoton.2010.4
|
[56] |
FOTIADI A A. An incoherent fibre laser[J].
Nature Photonics, 2010, 4(4): 204-205.
doi:10.1038/nphoton.2010.76
|
[57] |
SUGAVANAM S, SOROKINA M, CHURKIN D V. Spectral correlations in a random distributed feedback fibre laser[J].
Nature Communications, 2017, 8: 15514.
doi:10.1038/ncomms15514
|
[58] |
OGORODNIKOV L L, VERGELES S S. Intensity statistics in a long random fiber Raman laser[J].
Optics Letters, 2018, 43(4): 651-654.
doi:10.1364/OL.43.000651
|
[59] |
ZHANG H W, HUANG L, SONG J X,
et al. Quasi-kilowatt random fiber laser[J].
Optics Letters, 2019, 44(11): 2613-2616.
doi:10.1364/OL.44.002613
|
[60] |
ZHANG L, JIANG H W, YANG X Z,
et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J].
Scientific Reports, 2017, 7: 42611.
doi:10.1038/srep42611
|
[61] |
饶云江. 光纤随机 器及其应用研究进展[J]. 光子学报,2019,48(11):1148002.
doi:10.3788/gzxb20194811.1148002
RAO Y J. Research advances of random fiber lasers and its applications[J].
Acta Photonica Sinica, 2019, 48(11): 1148002. (in Chinese)
doi:10.3788/gzxb20194811.1148002
|
[62] |
ZHANG L, WANG CH, LI ZH Y,
et al. High-efficiency Brillouin random fiber laser using all-polarization maintaining ring cavity[J].
Optics Express, 2017, 25(10): 11306-11314.
doi:10.1364/OE.25.011306
|
[63] |
BABIN S A, DONTSOVA E I, KABLUKOV S I. Random fiber laser directly pumped by a high-power laser diode[J].
Optics Letters, 2013, 38(17): 3301-3303.
doi:10.1364/OL.38.003301
|
[64] |
EVMENOVA E A, KUZNETSOV A G, NEMOV I N,
et al. 2nd-order random lasing in a multimode diode-pumped graded-index fiber[J].
Scientific Reports, 2018, 8(1): 17495.
doi:10.1038/s41598-018-35767-9
|