Citation: | WANG Yong-hong, ZHANG Qian, HU Yin, WANG Huan-qing. 3D small-field surface imaging based on microscopic fringe projection profilometry:a review[J].Chinese Optics, 2021, 14(3): 447-457.doi:10.37188/CO.2020-0199 |
[1] |
WANG J H, YANG Y X, SHAO M W,
et al. Three-dimensional measurement for rigid moving objects based on multi-fringe projection[J].
IEEE Photonics Journal, 2020, 12(4): 6802114.
|
[2] |
XIA P, WANG Q H, RI SH E. Random phase-shifting digital holography based on a self-calibrated system[J].
Optics Express, 2020, 28(14): 19988-19996.
doi:10.1364/OE.395819
|
[3] |
屈铭, 郑俊杰, 李敏, 等. 基于扫描白光干涉法的LCOS芯片像素级相位分析[J]. 光子学报,2019,48(9):0911004.
doi:10.3788/gzxb20194809.0911004
QU M, ZHENG J J, LI M,
et al. Pixel-level observation of phase profile in liquid crystal on silicon device by white light scanning interferometry[J].
Acta Photonica Sinica, 2019, 48(9): 0911004. (in Chinese)
doi:10.3788/gzxb20194809.0911004
|
[4] |
MURAKAMI H, KATSUKI A, SAJIMA T,
et al. Investigation of factors affecting sensitivity enhancement of an optical fiber probe for microstructure measurement using oblique incident light[J].
Applied Sciences, 2020, 10(9): 3191.
doi:10.3390/app10093191
|
[5] |
李成辉, 田云飞, 闫曙光. 扫描共聚焦显微成像技术与应用[J]. 实验科学与技术,2020,18(4):33-38.
doi:10.12179/1672-4550.20190257
LI CH H, TIAN Y F, YAN SH G. Laser scanning confocal microscopy and its application[J].
Experiment Science and Technology, 2020, 18(4): 33-38. (in Chinese)
doi:10.12179/1672-4550.20190257
|
[6] |
HU Y, CHEN Q, FENG SH J,
et al. Microscopic fringe projection profilometry: a review[J].
Optics and Lasers in Engineering, 2020, 135: 106192.
doi:10.1016/j.optlaseng.2020.106192
|
[7] |
LEONHARDT K, DROSTE U, TIZIANI H J. Microshape and rough-surface analysis by fringe projection[J].
Applied Optics, 1994, 33(31): 7477-7488.
doi:10.1364/AO.33.007477
|
[8] |
QUAN C, HE X Y, WANG C F,
et al. Shape measurement of small objects using LCD fringe projection with phase shifting[J].
Optics Communications, 2001, 189(1-3): 21-29.
doi:10.1016/S0030-4018(01)01038-0
|
[9] |
PROLL K P, NIVET J M, KÖRNER K,
et al. Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays[J].
Applied Optics, 2003, 42(10): 1773-1778.
doi:10.1364/AO.42.001773
|
[10] |
NOTNI G, RIEHEMANN S, KUEHMSTEDT P,
et al. OLED microdisplays: a new key element for fringe projection setups[J].
Proceedings of SPIE, 2004, 5532: 170-177.
doi:10.1117/12.560433
|
[11] |
ZHANG SH F, LI B, REN F J,
et al. High-precision measurement of binocular telecentric vision system with novel calibration and matching methods[J].
IEEE Access, 2019, 7: 54682-54692.
doi:10.1109/ACCESS.2019.2913181
|
[12] |
ZHANG CH P, HUANG P S, CHIANG F P. Microscopic phase-shifting profilometry based on digital micromirror device technology[J].
Applied Optics, 2002, 41(28): 5896-5904.
doi:10.1364/AO.41.005896
|
[13] |
LIU Y H, ZHANG Q C, ZHANG H H,
et al. Improve temporal Fourier transform profilometry for complex dynamic three-dimensional shape measurement[J].
Sensors, 2020, 20(7): 1808.
doi:10.3390/s20071808
|
[14] |
ZHANG H H, ZHANG Q C, LI Y,
et al. High speed 3D shape measurement with temporal Fourier transform profilometry[J].
Applied Sciences, 2019, 9(19): 4123.
doi:10.3390/app9194123
|
[15] |
史耀群, 邓林嘉, 王朝旭, 等. 一种基于结构光条纹投影的微小物体测量系统[J]. 应用光学,2019,40(6):1120-1125.
doi:10.5768/JAO201940.0603007
SHI Y Q, DENG L J, WANG ZH X,
et al. Micro-objects measurement system based on structured light fringe projection[J].
Journal of Applied Optics, 2019, 40(6): 1120-1125. (in Chinese)
doi:10.5768/JAO201940.0603007
|
[16] |
ZHONG M, CUI J, HYUN J S,
et al. Uniaxial three-dimensional phase-shifting profilometry using a dual-telecentric structured light system in micro-scale devices[J].
Measurement Science and Technology, 2020, 31(8): 085003.
doi:10.1088/1361-6501/ab63b2
|
[17] |
殷永凯, 张宗华, 刘晓利, 等. 条纹投影轮廓术系统模型与标定综述[J]. 红外与 工程,2020,49(3):0303008.
doi:10.3788/IRLA202049.0303008
YIN Y K, ZHANG Z H, LIU X L,
et al. Review of the system model and calibration for fringe projection profilometry[J].
Infrared and Laser Engineering, 2020, 49(3): 0303008. (in Chinese)
doi:10.3788/IRLA202049.0303008
|
[18] |
ZHANG ZH Y. A flexible new technique for camera calibration[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
doi:10.1109/34.888718
|
[19] |
LI B W, KARPINSKY N, ZHANG S. Novel calibration method for structured-light system with an out-of-focus projector[J].
Applied Optics, 2014, 53(16): 3415-3426.
doi:10.1364/AO.53.003415
|
[20] |
LI B W, ZHANG S. Flexible calibration method for microscopic structured light system using telecentric lens[J].
Optics Express, 2015, 23(20): 25795-25803.
doi:10.1364/OE.23.025795
|
[21] |
LIU H B, LIN H J, YAO L SH. Calibration method for projector-camera-based telecentric fringe projection profilometry system[J].
Optics Express, 2017, 25(25): 31492-31508.
doi:10.1364/OE.25.031492
|
[22] |
安东, 陈李, 丁一飞, 等. 光栅投影相位法系统模型及标定方法[J]. 中国光学,2015,8(2):248-254.
doi:10.3788/co.20150802.0248
AN D, CHEN L, DING Y F,
et al. Optical system model and calibration of grating projection phase method[J].
Chinese Optics, 2015, 8(2): 248-254. (in Chinese)
doi:10.3788/co.20150802.0248
|
[23] |
丁一飞, 王永红, 胡悦, 等. 样本块匹配光栅投影阶梯标定方法[J]. 中国测试,2016,42(8):7-12.
doi:10.11857/j.issn.1674-5124.2016.08.002
DING Y F, WANG Y H, HU Y,
et al. Step calibration method of grating projection based on exemplar matching[J].
China Measurement&
Test, 2016, 42(8): 7-12. (in Chinese)
doi:10.11857/j.issn.1674-5124.2016.08.002
|
[24] |
LU P, SUN CH K, LIU B,
et al. Accurate and robust calibration method based on pattern geometric constraints for fringe projection profilometry[J].
Applied Optics, 2017, 56(4): 784-794.
doi:10.1364/AO.56.000784
|
[25] |
CHEN Z, LIAO H Y, ZHANG X M. Telecentric stereo micro-vision system: calibration method and experiments[J].
Optics and Lasers in Engineering, 2014, 57: 82-92.
doi:10.1016/j.optlaseng.2014.01.021
|
[26] |
HU Y, CHEN Q, LI H Y,
et al. Absolute three-dimensional micro surface profile measurement based on a Greenough-type stereomicroscope[J].
Measurement Science and Technology, 2017, 28(4): 045004.
doi:10.1088/1361-6501/aa5a2d
|
[27] |
Overview: DLP products[EB/OL]. [2020-10-18].
http://www.ti.com/dlp-chip/overview.html.
|
[28] |
肖萍萍. 基于光栅投射的小尺寸物体三维形状测量系统研究[D]. 武汉: 华中科技大学, 2019.
XIAO P P. Research on 3D shape measurement system of small scale object based on grating projection[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese).
|
[29] |
VAN DER JEUGHT S, SOONS J A M, DIRCKX J J J. Real-time microscopic phase-shifting profilometry[J].
Applied Optics, 2015, 54(15): 4953-4959.
|
[30] |
CHEN L C, LIAO CH CH, LAI M J. Full-field micro surface profilometry using digital fringe projection with spatial encoding principle[J].
Journal of Physics:
Conference Series, 2005, 13: 147-150.
doi:10.1088/1742-6596/13/1/034
|
[31] |
LI A M, PENG X, YIN Y K,
et al. Fringe projection based quantitative 3D microscopy[J].
Optik, 2013, 124(21): 5052-5056.
doi:10.1016/j.ijleo.2013.03.070
|
[32] |
LI D, LIU CH Y, TIAN J D. Telecentric 3D profilometry based on phase-shifting fringe projection[J].
Optics Express, 2014, 22(26): 31826-31835.
doi:10.1364/OE.22.031826
|
[33] |
PENG J ZH, WANG M, DENG N N,
et al. Distortion correction for microscopic fringe projection system with Scheimpflug telecentric lens[J].
Applied Optics, 2015, 54(34): 10055-10062.
doi:10.1364/AO.54.010055
|
[34] |
YIN Y K, WANG M, GAO B Z,
et al. Fringe projection 3D microscopy with the general imaging model[J].
Optics Express, 2015, 23(5): 6846-6857.
doi:10.1364/OE.23.006846
|
[35] |
WANG M, YIN Y K, DENG D N,
et al. Improved performance of multi-view fringe projection 3D microscopy[J].
Optics Express, 2017, 25(16): 19408-19421.
doi:10.1364/OE.25.019408
|
[36] |
HU Y, CHEN Q, FENG SH J,
et al. A new microscopic telecentric stereo vision system-calibration, rectification, and three-dimensional reconstruction[J].
Optics and Lasers in Engineering, 2019, 113: 14-22.
doi:10.1016/j.optlaseng.2018.09.011
|
[37] |
HU Y, LIANG Y CH, TAO T Y,
et al. Dynamic 3D measurement of thermal deformation based on geometric-constrained stereo-matching with a stereo microscopic system[J].
Measurement Science and Technology, 2019, 30(12): 125007.
doi:10.1088/1361-6501/ab35a1
|
[38] |
QUAN C, TAY C J, HE X Y,
et al. Microscopic surface contouring by fringe projection method[J].
Optics&
Laser Technology, 2002, 34(7): 547-552.
|
[39] |
WANG W H, WONG Y S, HONG G S. 3D measurement of crater wear by phase shifting method[J].
Wear, 2006, 261(2): 164-171.
doi:10.1016/j.wear.2005.09.036
|
[40] |
张莲涛, 卢荣胜, 程子怡. 基于相移偏折法的高反射表面面形测量技术[J]. 光子学报,2020,49(1):0112002.
doi:10.3788/gzxb20204901.0112002
ZHANG L T, LU R SH, CHENG Z Y. Measurement technique of high-reflected surface based on phase measuring deflectometry[J].
Acta Photonica Sinica, 2020, 49(1): 0112002. (in Chinese)
doi:10.3788/gzxb20204901.0112002
|
[41] |
LIU X H, ZHANG Z H, GAO N,
et al. 3D shape measurement of diffused/specular surface by combining fringe projection and direct phase measuring deflectometry[J].
Optics Express, 2020, 28(19): 27561-27574.
doi:10.1364/OE.402432
|
[42] |
陶迁, 周志峰, 吴明晖, 等. 基于相位测量偏折术的反射表面缺陷检测[J]. 液晶与显示,2020,35(12):1315-1322.
doi:10.37188/YJYXS20203512.1315
TAO Q, ZHOU ZH F, WU M H,
et al. Detection of reflective surface defects based on phase measuring deflectometry[J].
Chinese Journal of Liquid Crystals and Displays, 2020, 35(12): 1315-1322. (in Chinese)
doi:10.37188/YJYXS20203512.1315
|
[43] |
王月敏, 张宗华, 高楠. 基于全场条纹反射的镜面物体三维面形测量综述[J]. 光学 精密工程,2018,26(5):1014-1027.
doi:10.3788/OPE.20182605.1014
WANG Y M, ZHANG Z H, GAO N. Review on three-dimensional surface measurements of specular objects based on full-field fringe reflection[J].
Optics and Precision Engineering, 2018, 26(5): 1014-1027. (in Chinese)
doi:10.3788/OPE.20182605.1014
|
[44] |
ZHANG L, CHEN Q, ZUO CH,
et al. High-speed high dynamic range 3D shape measurement based on deep learning[J].
Optics and Lasers in Engineering, 2020, 134: 106245.
doi:10.1016/j.optlaseng.2020.106245
|
[45] |
JIANG H ZH, ZHAO H J, LI X D. High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces[J].
Optics and Lasers in Engineering, 2012, 50(10): 1484-1493.
doi:10.1016/j.optlaseng.2011.11.021
|
[46] |
RAO L, DA F P. High dynamic range 3D shape determination based on automatic exposure selection[J].
Journal of Visual Communication and Image Representation, 2018, 50: 217-226.
doi:10.1016/j.jvcir.2017.12.003
|
[47] |
ZHANG S. Rapid and automatic optimal exposure control for digital fringe projection technique[J].
Optics and Lasers in Engineering, 2020, 128: 106029.
doi:10.1016/j.optlaseng.2020.106029
|
[48] |
CHEN CH, GAO N, WANG X J,
et al. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement[J].
Optics Communications, 2018, 410: 694-702.
doi:10.1016/j.optcom.2017.11.009
|
[49] |
WANG J H, YANG Y X. High-speed three-dimensional measurement technique for object surface with a large range of reflectivity variations[J].
Applied Optics, 2018, 57(30): 9172-9182.
doi:10.1364/AO.57.009172
|
[50] |
SONG ZH, JIANG H L, LIN H B,
et al. A high dynamic range structured light means for the 3D measurement of specular surface[J].
Optics and Lasers in Engineering, 2017, 95: 8-16.
doi:10.1016/j.optlaseng.2017.03.008
|
[51] |
LIU Y ZH, FU Y J, CAI X Q,
et al. A novel high dynamic range 3D measurement method based on adaptive fringe projection technique[J].
Optics and Lasers in Engineering, 2020, 128: 106004.
doi:10.1016/j.optlaseng.2020.106004
|
[52] |
万钇良, 王建立, 张楠. 一种基于相位相关与子图像的偏振图像配准方法[J]. 液晶与显示,2019,34(5):530-536.
doi:10.3788/YJYXS20193405.0530
WAN Y L, WANG J L, ZHANG N. Polarized image registration method based on phase correlation and sub-graph[J].
Chinese Journal of Liquid Crystals and Displays, 2019, 34(5): 530-536. (in Chinese)
doi:10.3788/YJYXS20193405.0530
|
[53] |
RIVIERE J, RESHETOUSKI I, FILIPI L,
et al. Polarization imaging reflectometry in the wild[J].
ACM Transactions on Graphics, 2017, 36(6): 206.
|
[54] |
FENG SH J, ZHANG Y ZH, CHEN Q,
et al. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique[J].
Optics and Lasers in Engineering, 2014, 59: 56-71.
doi:10.1016/j.optlaseng.2014.03.003
|
[55] |
BENVENISTE R, ÜNSALAN C. Binary and ternary coded structured light 3D scanner for shiny objects[M]//GELENBE E, LENT R, SAKELLARI G,
et al. .Computer and Information Sciences. Dordrecht: Springer, 2011: 241-244.
|
[56] |
BENVENISTE R, ÜNSALAN C. A color invariant for line stripe-based range scanners[J].
The Computer Journal, 2011, 54(5): 738-753.
doi:10.1093/comjnl/bxq014
|
[57] |
BENVENISTE R, ÜNSALAN C. Nary coded structured light-based range scanners using color invariants[J].
Journal of Real-Time Image Processing, 2014, 9(2): 359-377.
doi:10.1007/s11554-011-0235-4
|
[58] |
MENG L F, LU L Y, BEDARD N,
et al. . Single-shot specular surface reconstruction with gonio-plenoptic imaging[C].
Proceedings of 2015
IEEE
International
Conference
on
Computer
Vision, IEEE, 2015.
|
[59] |
ZHANG L, CHEN Q, ZUO CH,
et al. High dynamic range and real-time 3D measurement based on a multi-view system[J].
Proceedings of SPIE, 2019, 11427: 1142715.
|
[60] |
HU Y, CHEN Q, LIANG Y CH,
et al. Microscopic 3D measurement of shiny surfaces based on a multi-frequency phase-shifting scheme[J].
Optics and Lasers in Engineering, 2019, 122: 1-7.
doi:10.1016/j.optlaseng.2019.05.019
|