Citation: | ZHENG Jia-lu, DAI Zhi-gao, HU Guang-wei, OU Qing-dong, ZHANG Jin-rui, GAN Xue-tao, QIU Cheng-wei, BAO Qiao-liang. Twisted van der Waals materials for photonics[J].Chinese Optics, 2021, 14(4): 812-822.doi:10.37188/CO.2021-0023 |
[1] |
DAI ZH G, HU G W, SI G Y,
et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities[J].
Nature Communications, 2020, 11(1): 6086.
doi:10.1038/s41467-020-19913-4
|
[2] |
MA W L, SHABBIR B, OU Q D,
et al. Anisotropic polaritons in van der Waals materials[J].
InfoMat, 2020, 2(5): 777-790.
doi:10.1002/inf2.12119
|
[3] |
NOVOSELOV K S, GEIM A K, MOROZOV S V,
et al. Electric field effect in atomically thin carbon films[J].
Science, 2004, 306(5696): 666-669.
doi:10.1126/science.1102896
|
[4] |
BAO Q L, LOH K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J].
ACS Nano, 2012, 6(5): 3677-3694.
doi:10.1021/nn300989g
|
[5] |
XIA F N, WANG H, XIAO D,
et al. Two-dimensional material nanophotonics[J].
Nature Photonics, 2014, 8(12): 899-907.
doi:10.1038/nphoton.2014.271
|
[6] |
LOW T, CHAVES A, CALDWELL J D,
et al. Polaritons in layered two-dimensional materials[J].
Nature Materials, 2017, 16(2): 182-194.
doi:10.1038/nmat4792
|
[7] |
KHURGIN J B, SUN G. In search of the elusive lossless metal[J].
Applied Physics Letters, 2010, 96(18): 181102.
doi:10.1063/1.3425890
|
[8] |
HU F, LUAN Y, SCOTT M E,
et al. Imaging exciton–polariton transport in MoSe
2waveguides[J].
Nature Photonics, 2017, 11(6): 356-360.
doi:10.1038/nphoton.2017.65
|
[9] |
CALDWELL J D, LINDSAY L, GIANNINI V,
et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons[J].
Nanophotonics, 2015, 4(1): 44-68.
doi:10.1515/nanoph-2014-0003
|
[10] |
HU G W, SHEN J L, QIU CH W,
et al. Phonon polaritons and hyperbolic response in van der waals materials[J].
Advanced Optical Materials, 2020, 8(5): 1901393.
doi:10.1002/adom.201901393
|
[11] |
CARR S, MASSATT D, FANG SH A,
et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle[J].
Physical Review B, 2017, 95(7): 075420.
doi:10.1103/PhysRevB.95.075420
|
[12] |
CAO Y, FATEMI V, DEMIR A,
et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J].
Nature, 2018, 556(7699): 80-84.
doi:10.1038/nature26154
|
[13] |
CAO Y, FATEMI V, FANG SH A,
et al. Unconventional superconductivity in magic-angle graphene superlattices[J].
Nature, 2018, 556(7699): 43-50.
doi:10.1038/nature26160
|
[14] |
JIANG L L, SHI ZH W, ZENG B,
et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls[J].
Nature Materials, 2016, 15(8): 840-844.
doi:10.1038/nmat4653
|
[15] |
SUNKU S S, NI G X, JIANG B Y,
et al. Photonic crystals for nano-light in moiré graphene superlattices[J].
Science, 2018, 362(6419): 1153-1156.
doi:10.1126/science.aau5144
|
[16] |
TRAN K, MOODY G, WU F CH,
et al. Evidence for moire excitons in van der Waals heterostructures[J].
Nature, 2019, 567(7746): 71-75.
doi:10.1038/s41586-019-0975-z
|
[17] |
SEYLER K L, RIVERA P, YU H Y,
et al. Signatures of moire-trapped valley excitons in MoSe
2/WSe
2heterobilayers[J].
Nature, 2019, 567(7746): 66-70.
doi:10.1038/s41586-019-0957-1
|
[18] |
JIN CH H, REGAN E C, YAN A M,
et al. Observation of moire excitons in WSe
2/WS
2heterostructure superlattices[J].
Nature, 2019, 567(7746): 76-80.
doi:10.1038/s41586-019-0976-y
|
[19] |
ALEXEEV E M, RUIZ-TIJERINA D A, DANOVICH M,
et al. Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures[J].
Nature, 2019, 567(7746): 81-86.
doi:10.1038/s41586-019-0986-9
|
[20] |
NI G X, WANG H, JIANG B Y,
et al. Soliton superlattices in twisted hexagonal boron nitride[J].
Nature Communications, 2019, 10(1): 4360.
doi:10.1038/s41467-019-12327-x
|
[21] |
HU G W, OU Q D, SI G Y,
et al. Topological polaritons and photonic magic angles in twisted
α-MoO
3bilayers[J].
Nature, 2020, 582(7811): 209-213.
doi:10.1038/s41586-020-2359-9
|
[22] |
MA W L, ALONSO-GONZÁLEZ P, LI SH J,
et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal[J].
Nature, 2018, 562(7728): 557-562.
doi:10.1038/s41586-018-0618-9
|
[23] |
ZHENG Z B, XU N SH, OSCURATO S L,
et al. A mid-infrared biaxial hyperbolic van der Waals crystal[J].
Science Advances, 2019, 5(5): eaav8690.
doi:10.1126/sciadv.aav8690
|
[24] |
WU Y J, OU Q D, YIN Y F,
et al. Chemical switching of low-loss phonon polaritons in
α-MoO
3by hydrogen intercalation[J].
Nature Communications, 2020, 11(1): 2646.
doi:10.1038/s41467-020-16459-3
|
[25] |
ALCARAZ IRANZO D, NANOT S, DIAS E J C,
et al. Probing the ultimate plasmon confinement limits with a van der waals heterostructure[J].
Science, 2018, 360(6386): 291-295.
doi:10.1126/science.aar8438
|
[26] |
NI G X, WANG H, WU J S,
et al. Plasmons in graphene moiré superlattices[J].
Nature Materials, 2015, 14(12): 1217-1222.
doi:10.1038/nmat4425
|
[27] |
FEI Z, RODIN A S, ANDREEV G O,
et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J].
Nature, 2012, 487(7405): 82-85.
doi:10.1038/nature11253
|
[28] |
CHEN J N, BADIOLI M, ALONSO-GONZÁLEZ P,
et al. Optical nano-imaging of gate-tunable graphene plasmons[J].
Nature, 2012, 487(7405): 77-81.
doi:10.1038/nature11254
|
[29] |
WOESSNER A, LUNDEBERG M B, GAO Y D,
et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J].
Nature Materials, 2015, 14(4): 421-425.
doi:10.1038/nmat4169
|
[30] |
NI G X, WANG L, GOLDFLAM M D,
et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene[J].
Nature Photonics, 2016, 10(4): 244-247.
doi:10.1038/nphoton.2016.45
|
[31] |
吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展[J]. 物理学报,2019,68(22):220303.
doi:10.7498/aps.68.20191317
LÜ X Y, LI ZH Q. Topological properties of graphene moiré superlattice systems and recent optical studies[J].
Acta Physica Sinica, 2019, 68(22): 220303. (in Chinese)
doi:10.7498/aps.68.20191317
|
[32] |
DAI ZH G, HU G W, OU Q D,
et al. Artificial metaphotonics born naturally in two dimensions[J].
Chemical Reviews, 2020, 120(13): 6197-6246.
doi:10.1021/acs.chemrev.9b00592
|
[33] |
SUN J B, ZHOU J, LI B,
et al. Indefinite permittivity and negative refraction in natural material: graphite[J].
Applied Physics Letters, 2011, 98(10): 101901.
doi:10.1063/1.3562033
|
[34] |
JACOB Z, ALEKSEYEV L V, NARIMANOV E.
Optical hyperlens: far-field imaging beyond the diffraction limit[J].
Optics Express, 2006, 14(18): 8247-8256.
doi:10.1364/OE.14.008247
|
[35] |
RHO J, YE Z L, XIONG Y,
et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies[J].
Nature Communications, 2010, 1(1): 143.
doi:10.1038/ncomms1148
|
[36] |
LU D, KAN J J, FULLERTON E E,
et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials[J].
Nature Nanotechnology, 2014, 9(1): 48-53.
doi:10.1038/nnano.2013.276
|
[37] |
SHALAGINOV M Y, ISHII S, LIU J,
et al. Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials[J].
Applied Physics Letters, 2013, 102(17): 173114.
doi:10.1063/1.4804262
|
[38] |
SREEKANTH K V, BIAGLOW T, STRANGI G. Directional spontaneous emission enhancement in hyperbolic metamaterials[J].
Journal of Applied Physics, 2013, 114(13): 134306.
doi:10.1063/1.4824287
|
[39] |
TUMKUR T, ZHU G, BLACK P,
et al. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial[J].
Applied Physics Letters, 2011, 99(15): 151115.
doi:10.1063/1.3631723
|
[40] |
NOGINOV M A, LI H, BARNAKOV Y A,
et al. Controlling spontaneous emission with metamaterials[J].
Optics Letters, 2010, 35(11): 1863-1865.
doi:10.1364/OL.35.001863
|
[41] |
WURTZ G A, POLLARD R, HENDREN W,
et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality[J].
Nature Nanotechnology, 2011, 6(2): 107-111.
doi:10.1038/nnano.2010.278
|
[42] |
KABASHIN A V, EVANS P, PASTKOVSKY S,
et al. Plasmonic nanorod metamaterials for biosensing[J].
Nature Materials, 2009, 8(11): 867-871.
doi:10.1038/nmat2546
|
[43] |
ALDEN J S, TSEN A W, HUANG P Y,
et al. Strain solitons and topological defects in bilayer graphene[J].
Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): 11256-11260.
doi:10.1073/pnas.1309394110
|
[44] |
JIANG B Y, NI G X, ADDISON Z,
et al. Plasmon reflections by topological electronic boundaries in bilayer graphene[J].
Nano Letters, 2017, 17(11): 7080-7085.
doi:10.1021/acs.nanolett.7b03816
|
[45] |
FEI Z, RODIN A S, GANNETT W,
et al. Electronic and plasmonic phenomena at graphene grain boundaries[J].
Nature Nanotechnology, 2013, 8(11): 821-825.
doi:10.1038/nnano.2013.197
|
[46] |
SONG Y, DERY H. Transport theory of monolayer transition-metal dichalcogenides through symmetry[J].
Physical Review Letters, 2013, 111(2): 026601.
doi:10.1103/PhysRevLett.111.026601
|
[47] |
JU L, SHI ZH W, NAIR N,
et al. Topological valley transport at bilayer graphene domain walls[J].
Nature, 2015, 520(7549): 650-655.
doi:10.1038/nature14364
|
[48] |
HU G W, KRASNOK A, MAZOR Y,
et al. Moiré hyperbolic metasurfaces[J].
Nano Letters, 2020, 20(5): 3217-3224.
doi:10.1021/acs.nanolett.9b05319
|
[49] |
张子洁, 梁瑜章, 徐挺. 双曲超材料及超表面研究进展[J]. 光电工程,2017,44(3):276-288.
doi:10.3969/j.issn.1003-501X.2017.03.002
ZHANG Z J, LIANG Y ZH, XU T. Research advances of hyperbolic metamaterials and metasurfaces[J].
Opto-Electronic Engineering, 2017, 44(3): 276-288. (in Chinese)
doi:10.3969/j.issn.1003-501X.2017.03.002
|
[50] |
HIGH A A, DEVLIN R C, DIBOS A,
et al. Visible-frequency hyperbolic metasurface[J].
Nature, 2015, 522(7555): 192-196.
doi:10.1038/nature14477
|
[51] |
GOMEZ-DIAZ J S, TYMCHENKO M, ALÙ A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces[J].
Physical Review Letters, 2015, 114(23): 233901.
doi:10.1103/PhysRevLett.114.233901
|
[52] |
CORREAS-SERRANO D, GOMEZ-DIAZ J S, MELCON A A,
et al. Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization[J].
Journal of Optics, 2016, 18(10): 104006.
doi:10.1088/2040-8978/18/10/104006
|
[53] |
LI P N, DOLADO I, ALFARO-MOZAZ F J,
et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J].
Science, 2018, 359(6378): 892-896.
doi:10.1126/science.aaq1704
|
[54] |
NEMILENTSAU A, LOW T, HANSON G. Anisotropic 2D materials for tunable hyperbolic plasmonics[J].
Physical Review Letters, 2016, 116(6): 066804.
doi:10.1103/PhysRevLett.116.066804
|
[55] |
GOMEZ-DIAZ J S, ALÙ A. Flatland optics with hyperbolic metasurfaces[J].
ACS Photonics, 2016, 3(12): 2211-2224.
doi:10.1021/acsphotonics.6b00645
|
[56] |
BELASHCHENKO K D, VAN SCHILFGAARDE M, ANTROPOV V P. Coexistence of covalent and metallic bonding in the boron intercalation superconductor MgB
2[J].
Physical Review B, 2001, 64(9): 092503.
doi:10.1103/PhysRevB.64.092503
|
[57] |
GURITANU V, KUZMENKO A B, Van Der MAREL D,
et al. Anisotropic optical conductivity and two colors of MgB
2[J].
Physical Review B, 2006, 73(10): 104509.
doi:10.1103/PhysRevB.73.104509
|
[58] |
NEE T W. Anisotropic optical properties of YBa
2Cu
3O
7[J].
Journal of Applied Physics, 1992, 71(12): 6002-6007.
doi:10.1063/1.350454
|
[59] |
KORZEB K, GAJC M, PAWLAK D A. Compendium of natural hyperbolic materials[J].
Optics Express, 2015, 23(20): 25406-25424.
doi:10.1364/OE.23.025406
|
[60] |
SUN J B, LITCHINITSER N M, ZHOU J. Indefinite by nature: from ultraviolet to terahertz[J].
ACS Photonics, 2014, 1(4): 293-303.
doi:10.1021/ph4000983
|
[61] |
CALDWELL J D, KRETININ A V, CHEN Y G,
et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride[J].
Nature Communications, 2014, 5(1): 5221.
doi:10.1038/ncomms6221
|
[62] |
ALEKSEYEV L V, PODOLSKIY V A, NARIMANOV E E. Homogeneous hyperbolic systems for terahertz and far-infrared frequencies[J].
Advances in OptoElectronics, 2012, 2012: 267564.
|
[63] |
GUPTA A, SAKTHIVEL T, SEAL S. Recent development in 2D materials beyond graphene[J].
Progress in Materials Science, 2015, 73: 44-126.
doi:10.1016/j.pmatsci.2015.02.002
|
[64] |
LOW T, ROLDÁN R, WANG H,
et al. Plasmons and screening in monolayer and multilayer black phosphorus[J].
Physical Review Letters, 2014, 113(10): 106802.
doi:10.1103/PhysRevLett.113.106802
|
[65] |
RODIN A S, CARVALHO A, CASTRO NETO A H. Strain-induced gap modification in black phosphorus[J].
Physical Review Letters, 2014, 112(17): 176801.
doi:10.1103/PhysRevLett.112.176801
|
[66] |
LOW T, RODIN A S, CARVALHO A,
et al. Tunable optical properties of multilayer black phosphorus thin films[J].
Physical Review B, 2014, 90(7): 075434.
doi:10.1103/PhysRevB.90.075434
|
[67] |
LIU Z ZH, AYDIN K. Localized surface plasmons in nanostructured monolayer black phosphorus[J].
Nano Letters, 2016, 16(6): 3457-3462.
doi:10.1021/acs.nanolett.5b05166
|
[68] |
CAO Y, CHOWDHURY D, RODAN-LEGRAIN D,
et al. Strange metal in magic-angle graphene with near planckian dissipation[J].
Physical Review Letters, 2020, 124(7): 076801.
doi:10.1103/PhysRevLett.124.076801
|
[69] |
NEUNER III B, KOROBKIN D, FIETZ C,
et al. Midinfrared index sensing of pL-scale analytes based on surface phonon polaritons in silicon carbide[J].
The Journal of Physical Chemistry C, 2010, 114(16): 7489-7491.
doi:10.1021/jp9114139
|
[70] |
DAI S, FEI Z, MA Q,
et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride[J].
Science, 2014, 343(6175): 1125-1129.
doi:10.1126/science.1246833
|
[71] |
LI P N, LEWIN M, KRETININ A V,
et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing[J].
Nature Communications, 2015, 6(1): 7507.
doi:10.1038/ncomms8507
|
[72] |
LI P, DOLADO I, ALFARO-MOZAZ F J,
et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der waals materials[J].
Nano Letters, 2017, 17(1): 228-235.
doi:10.1021/acs.nanolett.6b03920
|
[73] |
LI P N, HU G W, DOLADO I,
et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization[J].
Nature Communications, 2020, 11(1): 3663.
doi:10.1038/s41467-020-17425-9
|
[74] |
LI N, GUO X D, YANG X X,
et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride[J].
Nature Materials, 2021, 20(1): 43-48.
doi:10.1038/s41563-020-0763-z
|
[75] |
HU H, YANG X X, ZHAI F,
et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons[J].
Nature Communications, 2016, 7(1): 12334.
doi:10.1038/ncomms12334
|
[76] |
HU D B, YANG X X, LI CH,
et al. Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging[J].
Nature Communications, 2017, 8(1): 1471.
doi:10.1038/s41467-017-01580-7
|
[77] |
HU D B, CHEN K, CHEN X ZH,
et al. Tunable modal birefringence in a low-loss van der waals waveguide[J].
Advanced Materials, 2019, 31(27): 1807788.
doi:10.1002/adma.201807788
|
[78] |
HU H, YANG X X, GUO X D,
et al. Gas identification with graphene plasmons[J].
Nature Communications, 2019, 10(1): 1131.
doi:10.1038/s41467-019-09008-0
|
[79] |
GUO X D, LIU R N, HU D B,
et al. Efficient all-optical plasmonic modulators with atomically thin van der waals heterostructures[J].
Advanced Materials, 2020, 32(11): 1907105.
doi:10.1002/adma.201907105
|
[80] |
YANG X X, ZHAI F, HU H,
et al. Far-field spectroscopy and near-field optical imaging of coupled Plasmon-phonon polaritons in 2D van der waals heterostructures[J].
Advanced Materials, 2016, 28(15): 2931-2938.
doi:10.1002/adma.201505765
|
[81] |
BELOV P A, SIMOVSKI C R, IKONEN P. Canalization of subwavelength images by electromagnetic crystals[J].
Physical Review B, 2005, 71(19): 193105.
doi:10.1103/PhysRevB.71.193105
|
[82] |
KRISHNAMOORTHY H N S, JACOB Z, NARIMANOV E,
et al. Topological transitions in metamaterials[J].
Science, 2012, 336(6078): 205-209.
doi:10.1126/science.1219171
|
[83] |
KEILMANN F, HILLENBRAND R. Near-field microscopy by elastic light scattering from a tip[J].
Philosophical Transactions of the Royal Society A:
Mathematical,
Physical and Engineering Sciences, 2004, 362(1817): 787-805.
doi:10.1098/rsta.2003.1347
|
[84] |
SHVETS G, TRENDAFILOV S, PENDRY J B,
et al. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays[J].
Physical Review Letters, 2007, 99(5): 053903.
doi:10.1103/PhysRevLett.99.053903
|
[85] |
LI ZH Y, LIN L L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction[J].
Physical Review B, 2003, 68(24): 245110.
doi:10.1103/PhysRevB.68.245110
|