Citation: | SHI Xiao-gang, XUE Zheng-hui, LI Hui-hui, WANG Bing-jie, LI Shuang-long. Review of augmented reality display technology[J].Chinese Optics, 2021, 14(5): 1146-1161.doi:10.37188/CO.2021-0032 |
[1] |
CARMIGNIANI J, FURHT B, ANISETTI M,
et al. Augmented reality technologies, systems and applications[J].
Multimedia Tools and Applications, 2011, 51(1): 341-377.
doi:10.1007/s11042-010-0660-6
|
[2] |
何泽浩, 隋晓萌, 赵燕, 等. 基于全息光学的虚拟现实与增强现实技术进展[J]. 科技导报,2018,36(9):8-17.
HE Z H, SUI X M, ZHAO Y,
et al. The development trend of virtual reality and augmented reality technology based on holographic optics[J].
Science&
Technology Review, 2018, 36(9): 8-17. (in Chinese)
|
[3] |
范丽亚, 马介渊, 张克发, 等. 增强现实硬件产业的发展及展望[J]. 科技导报,2019,37(15):114-124.
FAN L Y, MA J Y, ZHANG K F,
et al. The development status and prospect of augmented reality hardware industry[J].
Science&
Technology Review, 2019, 37(15): 114-124. (in Chinese)
|
[4] |
CHANG CH L, BANG K, WETZSTEIN G,
et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective[J].
Optica, 2020, 7(11): 1563-1578.
doi:10.1364/OPTICA.406004
|
[5] |
WHEELWRIGHT B, SULAI Y, GENG Y,
et al. Field of view: not just a number[J].
Proceedings of SPIE, 2018, 10676: 1067604.
|
[6] |
ZHAN T, YIN K, XIONG J H,
et al. Augmented reality and virtual reality displays: perspectives and challenges[J].
iScience, 2020, 23(8): 101397.
doi:10.1016/j.isci.2020.101397
|
[7] |
CURCIO C A, SLOAN K R, KALINA R E,
et al. Human photoreceptor topography[J].
Journal of Comparative Neurology, 1990, 292(4): 497-523.
doi:10.1002/cne.902920402
|
[8] |
DOBROWOLSKI J A, SULLIVAN B T, BAJCAR R C. Optical interference, contrast-enhanced electroluminescent device[J].
Applied Optics, 1992, 31(28): 5988-5996.
doi:10.1364/AO.31.005988
|
[9] |
CHEN H W, TAN G J, WU S T. Ambient contrast ratio of LCDs and OLED displays[J].
Optics Express, 2017, 25(26): 33643-33656.
doi:10.1364/OE.25.033643
|
[10] |
LEE Y H, ZHAN T, WU S T. Prospects and challenges in augmented reality displays[J].
Virtual Reality&
Intelligent Hardware, 2019, 1(1): 10-20.
|
[11] |
SCHOWENGERDT B T, LIN D M, ST HILAIRE P. Multi-layer diffractive eyepiece: US, 2018052277A1[P]. 2018-02-22.
|
[12] |
HOFFMAN D M, GIRSHICK A R, AKELEY K,
et al. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue[J].
Journal of Vision, 2008, 8(3): 33.
doi:10.1167/8.3.33
|
[13] |
KRAMIDA G. Resolving the vergence-accommodation conflict in head-mounted displays[J].
IEEE Transactions on Visualization and Computer Graphics, 2016, 22(7): 1912-1931.
doi:10.1109/TVCG.2015.2473855
|
[14] |
ZHAN T, XIONG J H, ZOU J Y,
et al. Multifocal displays: review and prospect[J].
PhotoniX, 2020, 1: 10.
doi:10.1186/s43074-020-00010-0
|
[15] |
TAY S, BLANCHE P A, VOORAKARANAM R,
et al. An updatable holographic three-dimensional display[J].
Nature, 2008, 451(7179): 694-698.
doi:10.1038/nature06596
|
[16] |
YARAŞ F, KANG H, ONURAL L. State of the art in holographic displays: a survey[J].
Journal of Display Technology, 2010, 6(10): 443-454.
doi:10.1109/JDT.2010.2045734
|
[17] |
WETZSTEIN G, LANMAN D, HIRSCH M,
et al. Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting[J].
ACM Transactions on Graphics, 2012, 31(4): 80.
|
[18] |
YUUKI A, ITOGA K, SATAKE T. A new Maxwellian view display for trouble-free accommodation[J].
Journal of the Society for Information Display, 2012, 20(10): 581-588.
doi:10.1002/jsid.122
|
[19] |
STEVENS R E, RHODES D P, HASNAIN A,
et al. Varifocal technologies providing prescription and VAC mitigation in HMDs using Alvarez lenses[J].
Proceedings of SPIE, 2018, 10676: 106760J.
|
[20] |
DUNN D, TIPPETS C, TORELL K,
et al. Wide field of view varifocal near-eye display using see-through deformable membrane mirrors[J].
IEEE Transactions on Visualization and Computer Graphics, 2017, 23(4): 1322-1331.
doi:10.1109/TVCG.2017.2657058
|
[21] |
刘澍鑫, 李燕, 苏翼凯. 基于液晶散射膜的多平面增强现实显示[J]. 液晶与显示,2020,35(7):725-732.
LIU SH X, LI Y, SU Y K. Review on multi-plane augmented reality display based on liquid crystal scattering films[J].
Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 725-732. (in Chinese)
|
[22] |
LIU SH, HUA H. A systematic method for designing depth-fused multi-focal plane three-dimensional displays[J].
Optics Express, 2010, 18(11): 11562-11573.
doi:10.1364/OE.18.011562
|
[23] |
ZHAN T, LEE Y H, WU S T. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses[J].
Optics Express, 2018, 26(4): 4863-4872.
doi:10.1364/OE.26.004863
|
[24] |
LIU SH X, LI Y, ZHOU P CH,
et al. Full-color multi-plane optical see-through head‐mounted display for augmented reality applications[J].
Journal of the Society for Information Display, 2018, 26(12): 687-693.
doi:10.1002/jsid.739
|
[25] |
HUANG Y G, LIAO E, CHEN R,
et al. Liquid-crystal-on-silicon for augmented reality displays[J].
Applied Sciences, 2018, 8(12): 2366.
doi:10.3390/app8122366
|
[26] |
KIM J, KOMANDURI R K, LAWLER K F,
et al. Efficient and monolithic polarization conversion system based on a polarization grating[J].
Applied Optics, 2012, 51(20): 4852-4857.
doi:10.1364/AO.51.004852
|
[27] |
DU T, FAN F, TAM A M W,
et al. Complex nanoscale-ordered liquid crystal polymer film for high transmittance holographic polarizer[J].
Advanced Materials, 2015, 27(44): 7191-7195.
doi:10.1002/adma.201502395
|
[28] |
WANG CH, HSU R. 18‐4:
Invited Paper: Digital modulation on micro display and spatial light modulator[J].
SID Symposium Digest of Technical Papers, 2017, 48(1): 238-241.
doi:10.1002/sdtp.11678
|
[29] |
KANAZAWA M, HAMADA K, KONDOH I,
et al. An ultrahigh-definition display using the pixel-offset method[J].
Journal of the Society for Information Display, 2004, 12(1): 93-103.
doi:10.1889/1.1824245
|
[30] |
STERLING R. JVC D-ILA high resolution, high contrast projectors and applications[C].
Proceedings of the 2008 Workshop on Immersive Projection Technologies/Emerging Display Technologiges, ACM, 2008: 1-6.
|
[31] |
HUANG Y P, LIN F CH, SHIEH H P D. Eco-displays: the color LCD's without color filters and polarizers[J].
Journal of Display Technology, 2011, 7(12): 630-632.
doi:10.1109/JDT.2011.2166056
|
[32] |
LEE Y H, ZHAN T, WU S T. Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase detector[J].
Optics Letters, 2017, 42(22): 4732-4735.
|
[33] |
PETTITT G, FERRI J, THOMPSON J. 47.1:
invited paper: practical application of TI DLP
®technology in the next generation head-up display system[J].
SID Symposium Digest of Technical Papers, 2015, 46(1): 700-703.
doi:10.1002/sdtp.10269
|
[34] |
FIRTH M. Turning automotive windows into the Ultimate HMIs[J].
Information Display, 2020, 36(4): 16-20.
doi:10.1002/msid.1129
|
[35] |
MOTOYAMA Y, SUGIYAMA K, TANAKA H,
et al. High‐efficiency OLED microdisplay with microlens array[J].
Journal of the Society for Information Display, 2019, 27(6): 354-360.
doi:10.1002/jsid.784
|
[36] |
GHOSH A, DONOGHUE E P, KHAYRULLIN I,
et al. 18-1: invited paper: ultra-high-brightness 2K x 2K Full-color OLED microdisplay using direct patterning of OLED emitters[J].
SID Symposium Digest of Technical Papers, 2017, 48(1): 226-229.
doi:10.1002/sdtp.11674
|
[37] |
LIN J Y, JIANG H X. Development of microLED[J].
Applied Physics Letters, 2020, 116(10): 100502.
doi:10.1063/1.5145201
|
[38] |
HUANG Y, HSIANG E L, DENG M Y,
et al. Mini-LED, Micro-LED and OLED displays: Present status and future perspectives[J].
Light:
Science&
Applications, 2020, 9(1): 105.
|
[39] |
韩洪松, 齐爱想, 刘俊国, 等. Micro-LED在机载上的应用[J]. 液晶与显示,2021,36(3):439-447.
doi:10.37188/CJLCD.2020-0096
HAN H S, QI A X, LIU J G,
et al. Application of Micro-LED technology in airborne display[J].
Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 439-447. (in Chinese)
doi:10.37188/CJLCD.2020-0096
|
[40] |
QUESNEL E, LAGRANGE A, VIGIER M,
et al. Dimensioning a full color LED microdisplay for augmented reality headset in a very bright environment[J].
Journal of the Society for Information Display, 2021, 29(1): 3-16.
doi:10.1002/jsid.884
|
[41] |
郝斌, 赵文武, 郁建元, 等. 荧光粉Ba
5-3
x
/2B
4O
11:
xEu
3+的制备及发光性能[J]. 应用化学,2019,36(5):548-553.
doi:10.11944/j.issn.1000-0518.2019.05.180276
HAO B, ZHAO W W, YU J Y,
et al. Preparation and luminescence property of Ba
5-3
x
/2B
4O
11∶
xEu
3+phosphor[J].
Chinese Journal of Applied Chemistry, 2019, 36(5): 548-553. (in Chinese)
doi:10.11944/j.issn.1000-0518.2019.05.180276
|
[42] |
刘伟强, 崔荣朕, 武瑞霞, 等. 蓝色延迟荧光材料及器件的研究进展[J]. 应用化学,2019,36(1):1-9.
doi:10.11944/j.issn.1000-0518.2019.01.180071
LIU W Q, CUI R ZH, WU R X,
et al. Recent progress on blue delayed fluorescent materials and devices[J].
Chinese Journal of Applied Chemistry, 2019, 36(1): 1-9. (in Chinese)
doi:10.11944/j.issn.1000-0518.2019.01.180071
|
[43] |
黄国斌, 骆登峰, 张茂升. 多色高发光效率CsPbX
3(X=Cl, Br, I)钙钛矿量子点的制备及其在发光二极管中的应用[J]. 应用化学,2019,36(8):932-938.
doi:10.11944/j.issn.1000-0518.2019.08.190016
HUANG G B, LUO D F, ZHANG M SH. Preparation of CsPbX
3(X=Cl, Br, I) perovskite quantum dots with multicolor and high luminescence efficiency and its application in light emitting diode devices[J].
Chinese Journal of Applied Chemistry, 2019, 36(8): 932-938. (in Chinese)
doi:10.11944/j.issn.1000-0518.2019.08.190016
|
[44] |
ALEXANDER S, BAILEY M, MORRISON V R,
et al.. Systems, devices, and methods for eyebox expansion in wearable heads-up displays: US, 9989764[P]. 2018-06-05.
|
[45] |
HAAS G. 40-2:
invited paper: microdisplays for augmented and virtual reality[J].
SID Symposium Digest of Technical Papers, 2018, 49(1): 506-509.
doi:10.1002/sdtp.12445
|
[46] |
CADO H, MOLITON R. Polarization splitter, method of manufacturing same and ophthalmic lens incorporating projection inserts containing it: US, 20040136082[P]. 2004-07-15.
|
[47] |
MARTINEZ M A, SAEEDI E, AMIRPARVIZ B. Head-mounted display including integrated projector: US, 9128285[P]. 2015-09-08.
|
[48] |
WANG J H, LIANG Y CH, XU M. Design of a see-through head-mounted display with a freeform surface[J].
Journal of the Optical Society of Korea, 2015, 19(6): 614-618.
doi:10.3807/JOSK.2015.19.6.614
|
[49] |
TAKAHASHI K. Head or face mounted image display apparatus: US, 5701202[P]. 1997-12-23.
|
[50] |
AMITAI Y. Substrate-guided optical device utilizing thin transparent layer: US, 7724443[P]. 2010-05-25.
|
[51] |
CHENG D W, WANG Y T, XU CH,
et al. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics[J].
Optics Express, 2014, 22(17): 20705-20719.
doi:10.1364/OE.22.020705
|
[52] |
GU L, CHENG D W, WANG Q W,
et al. Design of a two-dimensional stray-light-free geometrical waveguide head-up display[J].
Applied Optics, 2018, 57(31): 9246-9256.
doi:10.1364/AO.57.009246
|
[53] |
KRESS B C. Optical waveguide combiners for AR headsets: features and limitations[J].
Proceedings of SPIE, 2019, 11062: 110620J.
|
[54] |
刘明欢, 付秀华, 王菲, 等. 增强现实显示衍射光波导的设计[J]. 液晶与显示,2021,36(3):389-397.
doi:10.37188/CJLCD.2020-0214
LIU M H, FU X H, WANG F,
et al. Design of augmented reality display diffraction optical waveguide[J].
Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 389-397. (in Chinese)
doi:10.37188/CJLCD.2020-0214
|
[55] |
MUKAWA H, AKUTSU K, MATSUMURA I,
et al. A full-color eyewear display using planar waveguides with reflection volume holograms[J].
Journal of the Society for Information Display, 2009, 17(3): 185-193.
doi:10.1889/JSID17.3.185
|
[56] |
KRESS B C, CUMMINGS W J. 11-1:
invited paper: towards the ultimate mixed reality experience: hololens display architecture choices[J].
SID Symposium Digest of Technical Papers, 2017, 48(1): 127-131.
doi:10.1002/sdtp.11586
|
[57] |
SCHOWENGERDT B T, LIN D M, ST HILAIRE P. Multi-layer diffractive eyepiece: US, 20200284967[P]. 2020-09-10.
|
[58] |
GLEESON M R, SHERIDAN J T. A review of the modelling of free-radical photopolymerization in the formation of holographic gratings[J].
Journal of Optics A:
Pure and Applied Optics, 2009, 11(2): 024008.
doi:10.1088/1464-4258/11/2/024008
|
[59] |
BRUDER F K, FÄCKE T, HAGEN R,
et al. Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol
®HX photopolymer film[J].
Proceedings of SPIE, 2015, 9626: 96260T.
|
[60] |
YEOM H J, KIM H J, KIM S B,
et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation[J].
Optics Express, 2015, 23(25): 32025-32034.
doi:10.1364/OE.23.032025
|
[61] |
LIN W K, MATOBA O, LIN B S,
et al. Astigmatism correction and quality optimization of computer-generated holograms for holographic waveguide displays[J].
Optics Express, 2020, 28(4): 5519-5527.
doi:10.1364/OE.381193
|
[62] |
MAIMONE A, GEORGIOU A, KOLLIN J S. Holographic near-eye displays for virtual and augmented reality[J].
ACM Transactions on Graphics, 2017, 36(4): 85.
|
[63] |
SUTHERLAND R L, TONDIGLIA V P, NATARAJAN L V,
et al. Electrically switchable volume gratings in polymer‐dispersed liquid crystals[J].
Applied Physics Letters, 1994, 64(9): 1074-1076.
doi:10.1063/1.110936
|
[64] |
FENG X Y, LU L, YAROSHCHUK O,
et al. Closer look at transmissive polarization volume holograms: geometry, physics, and experimental validation[J].
Applied Optics, 2021, 60(3): 580-592.
doi:10.1364/AO.412589
|
[65] |
NYS I. Patterned surface alignment to create complex three-dimensional nematic and chiral nematic liquid crystal structures[J].
Liquid Crystals Today, 2020, 29(4): 65-83.
doi:10.1080/1358314X.2020.1886780
|
[66] |
WENG Y SH, XU D M, ZHANG Y N,
et al. Polarization volume grating with high efficiency and large diffraction angle[J].
Optics Express, 2016, 24(16): 17746-17759.
doi:10.1364/OE.24.017746
|
[67] |
LEE Y H, YIN K, WU S T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays[J].
Optics Express, 2017, 25(22): 27008-27014.
doi:10.1364/OE.25.027008
|
[68] |
LEE Y H, TAN G J, ZHAN T,
et al. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities[J].
Optical Data Processing and Storage, 2017, 3(1): 79-88.
|
[69] |
SAKHNO O, GRITSAI Y, SAHM H,
et al. Fabrication and performance of efficient thin circular polarization gratings with Bragg properties using bulk photo-alignment of a liquid crystalline polymer[J].
Applied Physics B, 2018, 124(3): 52.
doi:10.1007/s00340-018-6920-2
|
[70] |
LEE Y H, TAN G J, YIN K,
et al. Compact see-through near-eye display with depth adaption[J].
Journal of the Society for Information Display, 2018, 26(2): 64-70.
doi:10.1002/jsid.635
|