Volume 14Issue 4
Jul. 2021
Turn off MathJax
Article Contents
HONG Xiao-rong, CHEN Shan-shan, LI Jia-fang. Deformable optical metasurfaces with dynamic reconfiguration[J]. Chinese Optics, 2021, 14(4): 867-885. doi: 10.37188/CO.2021-0036
Citation: HONG Xiao-rong, CHEN Shan-shan, LI Jia-fang. Deformable optical metasurfaces with dynamic reconfiguration[J].Chinese Optics, 2021, 14(4): 867-885.doi:10.37188/CO.2021-0036

Deformable optical metasurfaces with dynamic reconfiguration

doi:10.37188/CO.2021-0036
Funds:Supported by National Natural Science Fundation of China (No. 61675227, No. 61975016); Natural Science Foundation of Beijing Municipality (No. 1212013)
More Information
  • Corresponding author:jiafangli@bit.edu.cn
  • Received Date:01 Feb 2021
  • Rev Recd Date:26 Feb 2021
  • Available Online:14 May 2021
  • Publish Date:01 Jul 2021
  • As one type of novel two-dimensional artificial micro-nano structure, metasurfaces have exhibited strong potential for application in light manipulation in recent decades. However, there is a substantial calling for next-generation optical metasurfaces endowed with remarkable reconfiguration capabilities for practical applications in increasingly miniaturized and integrated opto-electronic devices. In this paper, we review the recent progress of deformable optical metasurfaces mainly fabricated by focused-ion-beam-based nano-kirigami and focus on their excellent performance and applications in the active control of phase, polarization, optical chirality, nonlinear radiation, etc. Deformable metasurfaces with their exceptional flexibility and reconfigurability provide a novel and feasible strategy for the design of functional micro-nano-optoelectronic devices, and immensely promote the development of emerging strainoptronics.

  • loading
  • [1]
    LI S Q, WANG G X, LI X Y, et al. All-dielectric metasurface for complete phase and amplitude control based on Pancharatnam-Berry phase and Fabry-Perot resonance[J]. Applied Physics Express, 2018, 11(10): 105201. doi:10.7567/APEX.11.105201
    [2]
    OVERVIG A C, SHRESTHA S, MALEK S C, et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J]. Light: Science& Applications, 2019, 8: 92.
    [3]
    BAO L, WU R Y, FU X J, et al. Multi-beam forming and controls by metasurface with phase and amplitude modulations[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6680-6685. doi:10.1109/TAP.2019.2925289
    [4]
    BIBBÒ L, LIU Q, KHAN K, et al. High-speed amplitude modulator with a high modulation index based on a plasmonic resonant tunable metasurface[J]. Applied Optics, 2019, 58(10): 2687-2694. doi:10.1364/AO.58.002687
    [5]
    LEE Y, KIM S J, YUN J G, et al. Electrically tunable multifunctional metasurface for integrating phase and amplitude modulation based on hyperbolic metamaterial substrate[J]. Optics Express, 2018, 26(24): 32063-32073. doi:10.1364/OE.26.032063
    [6]
    MINATTI G, CAMINITA F, MARTINI E, et al. Synthesis of modulated-metasurface antennas with amplitude, phase, and polarization control[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3907-3919. doi:10.1109/TAP.2016.2589969
    [7]
    YANG C, MA Q, BAI G D, et al.. Design of an X-band photoconductive metasurface with variable amplitude control[C]. Proceedings of 2018 International Symposium on Electromagnetic Compatibility( Emc Europe), IEEE, 2018: 990-993.
    [8]
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi:10.1126/science.1210713
    [9]
    LIN D M, FAN P Y, HASMAN E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. doi:10.1126/science.1253213
    [10]
    KASHEF M M, KASHANI Z G. Multifunctional space-time phase modulated graphene metasurface[J]. Journal of the Optical Society of America B, 2020, 37(11): 3243-3250. doi:10.1364/JOSAB.401333
    [11]
    ZHOU G N, SUN B H, LIANG Q Y, et al. Beam-deflection short backfire antenna using phase-modulated metasurface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(1): 546-551. doi:10.1109/TAP.2019.2934832
    [12]
    ZANG X F, XU W W, GU M, et al. Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging[J]. Advanced Optical Materials, 2020, 8(2): 1901342. doi:10.1002/adom.201901342
    [13]
    YU N F, AIETA F, GENEVET P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333. doi:10.1021/nl303445u
    [14]
    LI ZH CH, LIU W W, CHENG H, et al. Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface[J]. Scientific Reports, 2016, 5: 18106. doi:10.1038/srep18106
    [15]
    KRUK S, HOPKINS B, KRAVCHENKO I I, et al. Invited article: broadband highly efficient dielectric metadevices for polarization control[J]. APL Photonics, 2016, 1(3): 030801. doi:10.1063/1.4949007
    [16]
    ZANG X F, DING H ZH, INTARAVANNE Y, et al. A multi-foci metalens with polarization-rotated focal points[J]. Laser& Photonics Reviews, 2019, 13: 1900182.
    [17]
    ZANG X F, DONG F L, YUE F Y, et al. Polarization encoded color image embedded in a dielectric metasurface[J]. Advanced Materials, 2018, 30(21): 1707499. doi:10.1002/adma.201707499
    [18]
    LI G X, ZHANG SH, ZENTGRAF T. Nonlinear photonic metasurfaces[J]. Nature Reviews Materials, 2017, 2(5): 17010. doi:10.1038/natrevmats.2017.10
    [19]
    LI G X. Geometric phase and nonlinear photonic metasurfaces[J]. Proceedings of SPIE, 2018, 10639: 106390O.
    [20]
    ZHANG X Y, LI Q, LIU F F, et al. Controlling angular dispersions in optical metasurfaces[J]. Light: Science& Applications, 2020, 9: 76.
    [21]
    KHORASANINEJAD M, AIETA F, KANHAIYA P, et al. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters, 2015, 15(8): 5358-5362. doi:10.1021/acs.nanolett.5b01727
    [22]
    LI G X. Achromatic metasurface lens at visible wavelengths[J]. Science Bulletin, 2018, 63(6): 333-335. doi:10.1016/j.scib.2018.02.011
    [23]
    KHORASANINEJAD M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi:10.1021/acs.nanolett.6b05137
    [24]
    YANG H, LI G H, CAO G T, et al. High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces[J]. Optical Materials Express, 2018, 8(7): 1940-1950. doi:10.1364/OME.8.001940
    [25]
    WON R. Achromatic metalens for full-colour imaging[J]. Nature Photonics, 2018, 12(3): 130. doi:10.1038/s41566-018-0130-7
    [26]
    WANG S M, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi:10.1038/s41565-017-0052-4
    [27]
    HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808. doi:10.1038/ncomms3808
    [28]
    NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807. doi:10.1038/ncomms3807
    [29]
    HUANG Y W, CHEN W T, TSAI W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122-3127. doi:10.1021/acs.nanolett.5b00184
    [30]
    WANG B, DONG F L, LI Q T, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8): 5235-5240. doi:10.1021/acs.nanolett.6b02326
    [31]
    CHEN W T, YANG K Y, WANG C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225-230. doi:10.1021/nl403811d
    [32]
    WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi:10.1038/ncomms9241
    [33]
    WANG L, KRUK S, TANG H ZH, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504-1505. doi:10.1364/OPTICA.3.001504
    [34]
    LESINA A C, RAMUNNO L, BERINI P. Dual-polarization plasmonic metasurface for nonlinear optics[J]. Optics Letters, 2015, 40(12): 2874-2877. doi:10.1364/OL.40.002874
    [35]
    NOOKALA N, LEE J, TYMCHENKO M, et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response[J]. Optica, 2016, 3(3): 283-288. doi:10.1364/OPTICA.3.000283
    [36]
    SEMENIKHINA D V, CHIKOV N I, SEMENIKHIN A I, et al.. Experimental studies of nonlinear metasurface with metamaterial substrate[C]. Proceedings of 2016 24th Telecommunications Forum, IEEE, 2016: 562-565.
    [37]
    WAKATSUCHI H, RUSHTON J J, LEE J, et al. Experimental demonstration of nonlinear waveform-dependent metasurface absorber with pulsed signals[J]. Electronics Letters, 2013, 49(24): 1530-1530. doi:10.1049/el.2013.3010
    [38]
    JOO W J, KYOUNG J, ESFANDYARPOUR M, et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch[J]. Science, 2020, 370(6515): 459-463. doi:10.1126/science.abc8530
    [39]
    SAUTTER J, STAUDE I, DECKER M, et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano, 2015, 9(4): 4308-4315. doi:10.1021/acsnano.5b00723
    [40]
    DONG K CH, HONG S, DENG Y, et al. A lithography-free and field-programmable photonic metacanvas[J]. Advanced Materials, 2018, 30(5): 1703878. doi:10.1002/adma.201703878
    [41]
    MIAO Z Q, WU Q, LI X, et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J]. Physical Review X, 2015, 5(4): 041027. doi:10.1103/PhysRevX.5.041027
    [42]
    THYAGARAJAN K, SOKHOYAN R, ZORNBERG L, et al. Millivolt modulation of plasmonic metasurface optical response via ionic conductance[J]. Advanced Materials, 2017, 29(31): 1701044. doi:10.1002/adma.201701044
    [43]
    HOWES A, WANG W Y, KRAVCHENKO I, et al. Dynamic transmission control based on all-dielectric Huygens metasurfaces[J]. Optica, 2018, 5(7): 787-792. doi:10.1364/OPTICA.5.000787
    [44]
    YAO W, TANG L L, WANG J, et al. Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons[J]. IEEE Photonics Journal, 2018, 10(4): 4800909.
    [45]
    CAO T, WEI CH W, SIMPSON R E, et al. Rapid phase transition of a phase-change metamaterial perfect absorber[J]. Optical Materials Express, 2013, 3(8): 1101-1110. doi:10.1364/OME.3.001101
    [46]
    CAO T, WEI CH W, SIMPSON R E, et al. Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity[J]. Scientific Reports, 2014, 4: 4463.
    [47]
    ROY T, ZHANG SH Y, JUNG I W, et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302. doi:10.1063/1.5018865
    [48]
    SHE A, ZHANG SH Y, SHIAN S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi:10.1126/sciadv.aap9957
    [49]
    ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9: 812. doi:10.1038/s41467-018-03155-6
    [50]
    GAO H, WANG Y X, FAN X H, et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate[J]. Science Advances, 2020, 6(28): eaba8595. doi:10.1126/sciadv.aba8595
    [51]
    LI J X, YU P, ZHANG SH, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nature Communications, 2020, 11(1): 3574. doi:10.1038/s41467-020-17390-3
    [52]
    QU G Y, YANG W H, SONG Q H, et al. Reprogrammable meta-hologram for optical encryption[J]. Nature Communications, 2020, 11(1): 5484. doi:10.1038/s41467-020-19312-9
    [53]
    MAITI R, PATIL C, SAADI M A S R, et al. Strain-engineered high-responsivity MoTe 2photodetector for silicon photonic integrated circuits[J]. Nature Photonics, 2020, 14(9): 578-584. doi:10.1038/s41566-020-0647-4
    [54]
    WANG Z J, JING L Q, YAO K, et al. Origami-based reconfigurable metamaterials for tunable chirality[J]. Advanced Materials, 2017, 29(27): 1700412. doi:10.1002/adma.201700412
    [55]
    JING L Q, WANG Z J, ZHENG B, et al. Kirigami metamaterials for reconfigurable toroidal circular dichroism[J]. NPG Asia Materials, 2018, 10(9): 888-898. doi:10.1038/s41427-018-0082-x
    [56]
    LIU ZH G, DU H F, LI J F, et al. Nano-kirigami with giant optical chirality[J]. Science Advances, 2018, 4(7): eaat4436. doi:10.1126/sciadv.aat4436
    [57]
    TSENG M L, LIN ZH H, KUO H Y, et al. Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality[J]. Advanced Optical Materials, 2019, 7(15): 1900617. doi:10.1002/adom.201900617
    [58]
    PAN R H, LI Z C, LIU Z, et al.. Rapid bending origami in micro/nanoscale toward a versatile 3D metasurface[J]. Laser& Photonics Reviews, 2020, 14: 1900179.
    [59]
    ARORA W J, SMITH H I, BARBASTATHIS G. Membrane folding by ion implantation induced stress to fabricate three-dimensional nanostructures[J]. Microelectronic Engineering, 2007, 84(5-8): 1454-1458. doi:10.1016/j.mee.2007.01.182
    [60]
    SAMAYOA M J, HAQUE M A, COHEN P H. Focused ion beam irradiation effects on nanoscale freestanding thin films[J]. Journal of Micromechanics and Microengineering, 2008, 18(9): 095005. doi:10.1088/0960-1317/18/9/095005
    [61]
    NIX W D, CLEMENS B M. Crystallite coalescence: a mechanism for intrinsic tensile stresses in thin films[J]. Journal of Materials Research, 1999, 14(8): 3467-3473. doi:10.1557/JMR.1999.0468
    [62]
    LIU ZH G, DU H F, LI ZH Y, et al. Invited article: nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation[J]. APL Photonics, 2018, 3(10): 100803. doi:10.1063/1.5043065
    [63]
    LI J F, LIU ZH G. Focused-ion-beam-based nano-kirigami: from art to photonics[J]. Nanophotonics, 2018, 7(10): 1637-1650. doi:10.1515/nanoph-2018-0117
    [64]
    HAN Y, LIU ZH G, CHEN SH SH, et al. Cascaded multilayer nano-kirigami for extensible 3D nanofabrication and visible light manipulation[J]. Photonics Research, 2020, 8(9): 1506-1511. doi:10.1364/PRJ.398467
    [65]
    ZHU A Y, CHEN W T, ZAIDI A, et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures[J]. Light: Science& Applications, 2018, 7: 17158.
    [66]
    ZHAO R, ZHANG L, ZHOU J, et al. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index[J]. Physical Review B, 2011, 83(3): 035105. doi:10.1103/PhysRevB.83.035105
    [67]
    LIU ZH G, XU Y, JI CH Y, et al. Fano-enhanced circular dichroism in deformable stereo metasurfaces[J]. Advanced Materials, 2020, 32(8): 1907077. doi:10.1002/adma.201907077
    [68]
    TANG Y T, LIU ZH G, DENG J H, et al. Nano-kirigami metasurface with giant nonlinear optical circular dichroism[J]. Laser& Photonics Reviews, 2020, 14(7): 2000085.
    [69]
    LIU ZH G, LI J F, LIU ZH, et al. Fano resonance Rabi splitting of surface plasmons[J]. Scientific Reports, 2017, 7: 8010. doi:10.1038/s41598-017-08221-5
    [70]
    CUI A J, LIU Z, LI J F, et al.. Directly patterned substrate-free plasmonic "nanograter'' structures with unusual Fano resonances[J]. Light: Science& Applications, 2015, 4: e308.
    [71]
    LIU ZH G, LIU ZH, LI J F, et al. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials[J]. Scientific Reports, 2016, 6: 27817. doi:10.1038/srep27817
    [72]
    TIAN X M, LIU ZH G, LIN H, et al. Five-fold plasmonic Fano resonances with giant bisignate circular dichroism[J]. Nanoscale, 2018, 10(35): 16630-16637. doi:10.1039/C8NR05277H
    [73]
    LIU ZH, DU SH, CUI A J, et al. High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials[J]. Advanced Materials, 2017, 29(17): 1606298. doi:10.1002/adma.201606298
    [74]
    CHEN SH SH, WEI W, LIU ZH G, et al. Reconfigurable nano-kirigami metasurfaces by pneumatic pressure[J]. Photonics Research, 2020, 8(7): 1177-1182. doi:10.1364/PRJ.393333
    [75]
    CHEN SH SH, LIU ZH G, DU H F, et al. Electromechanically reconfigurable optical nano-kirigami[J]. Nature Communications, 2021, 12: 1299. doi:10.1038/s41467-021-21565-x
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views(2692) PDF downloads(422) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map