Citation: | HONG Xiao-rong, CHEN Shan-shan, LI Jia-fang. Deformable optical metasurfaces with dynamic reconfiguration[J].Chinese Optics, 2021, 14(4): 867-885.doi:10.37188/CO.2021-0036 |
[1] |
LI S Q, WANG G X, LI X Y,
et al. All-dielectric metasurface for complete phase and amplitude control based on Pancharatnam-Berry phase and Fabry-Perot resonance[J].
Applied Physics Express, 2018, 11(10): 105201.
doi:10.7567/APEX.11.105201
|
[2] |
OVERVIG A C, SHRESTHA S, MALEK S C,
et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J].
Light:
Science&
Applications, 2019, 8: 92.
|
[3] |
BAO L, WU R Y, FU X J,
et al. Multi-beam forming and controls by metasurface with phase and amplitude modulations[J].
IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6680-6685.
doi:10.1109/TAP.2019.2925289
|
[4] |
BIBBÒ L, LIU Q, KHAN K,
et al. High-speed amplitude modulator with a high modulation index based on a plasmonic resonant tunable metasurface[J].
Applied Optics, 2019, 58(10): 2687-2694.
doi:10.1364/AO.58.002687
|
[5] |
LEE Y, KIM S J, YUN J G,
et al. Electrically tunable multifunctional metasurface for integrating phase and amplitude modulation based on hyperbolic metamaterial substrate[J].
Optics Express, 2018, 26(24): 32063-32073.
doi:10.1364/OE.26.032063
|
[6] |
MINATTI G, CAMINITA F, MARTINI E,
et al. Synthesis of modulated-metasurface antennas with amplitude, phase, and polarization control[J].
IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3907-3919.
doi:10.1109/TAP.2016.2589969
|
[7] |
YANG C, MA Q, BAI G D,
et al.. Design of an X-band photoconductive metasurface with variable amplitude control[C].
Proceedings of 2018 International Symposium on Electromagnetic Compatibility(
Emc Europe),
IEEE, 2018: 990-993.
|
[8] |
YU N F, GENEVET P, KATS M A,
et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J].
Science, 2011, 334(6054): 333-337.
doi:10.1126/science.1210713
|
[9] |
LIN D M, FAN P Y, HASMAN E,
et al. Dielectric gradient metasurface optical elements[J].
Science, 2014, 345(6194): 298-302.
doi:10.1126/science.1253213
|
[10] |
KASHEF M M, KASHANI Z G. Multifunctional space-time phase modulated graphene metasurface[J].
Journal of the Optical Society of America B, 2020, 37(11): 3243-3250.
doi:10.1364/JOSAB.401333
|
[11] |
ZHOU G N, SUN B H, LIANG Q Y,
et al. Beam-deflection short backfire antenna using phase-modulated metasurface[J].
IEEE Transactions on Antennas and Propagation, 2020, 68(1): 546-551.
doi:10.1109/TAP.2019.2934832
|
[12] |
ZANG X F, XU W W, GU M,
et al. Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging[J].
Advanced Optical Materials, 2020, 8(2): 1901342.
doi:10.1002/adom.201901342
|
[13] |
YU N F, AIETA F, GENEVET P,
et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J].
Nano Letters, 2012, 12(12): 6328-6333.
doi:10.1021/nl303445u
|
[14] |
LI ZH CH, LIU W W, CHENG H,
et al. Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface[J].
Scientific Reports, 2016, 5: 18106.
doi:10.1038/srep18106
|
[15] |
KRUK S, HOPKINS B, KRAVCHENKO I I,
et al. Invited article: broadband highly efficient dielectric metadevices for polarization control[J].
APL Photonics, 2016, 1(3): 030801.
doi:10.1063/1.4949007
|
[16] |
ZANG X F, DING H ZH, INTARAVANNE Y,
et al. A multi-foci metalens with polarization-rotated focal points[J].
Laser&
Photonics Reviews, 2019, 13: 1900182.
|
[17] |
ZANG X F, DONG F L, YUE F Y,
et al. Polarization encoded color image embedded in a dielectric metasurface[J].
Advanced Materials, 2018, 30(21): 1707499.
doi:10.1002/adma.201707499
|
[18] |
LI G X, ZHANG SH, ZENTGRAF T. Nonlinear photonic metasurfaces[J].
Nature Reviews Materials, 2017, 2(5): 17010.
doi:10.1038/natrevmats.2017.10
|
[19] |
LI G X. Geometric phase and nonlinear photonic metasurfaces[J].
Proceedings of SPIE, 2018, 10639: 106390O.
|
[20] |
ZHANG X Y, LI Q, LIU F F,
et al. Controlling angular dispersions in optical metasurfaces[J].
Light:
Science&
Applications, 2020, 9: 76.
|
[21] |
KHORASANINEJAD M, AIETA F, KANHAIYA P,
et al. Achromatic metasurface lens at telecommunication wavelengths[J].
Nano Letters, 2015, 15(8): 5358-5362.
doi:10.1021/acs.nanolett.5b01727
|
[22] |
LI G X. Achromatic metasurface lens at visible wavelengths[J].
Science Bulletin, 2018, 63(6): 333-335.
doi:10.1016/j.scib.2018.02.011
|
[23] |
KHORASANINEJAD M, SHI Z, ZHU A Y,
et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J].
Nano Letters, 2017, 17(3): 1819-1824.
doi:10.1021/acs.nanolett.6b05137
|
[24] |
YANG H, LI G H, CAO G T,
et al. High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces[J].
Optical Materials Express, 2018, 8(7): 1940-1950.
doi:10.1364/OME.8.001940
|
[25] |
WON R. Achromatic metalens for full-colour imaging[J].
Nature Photonics, 2018, 12(3): 130.
doi:10.1038/s41566-018-0130-7
|
[26] |
WANG S M, WU P C, SU V C,
et al. A broadband achromatic metalens in the visible[J].
Nature Nanotechnology, 2018, 13(3): 227-232.
doi:10.1038/s41565-017-0052-4
|
[27] |
HUANG L L, CHEN X ZH, MÜHLENBERND H,
et al. Three-dimensional optical holography using a plasmonic metasurface[J].
Nature Communications, 2013, 4: 2808.
doi:10.1038/ncomms3808
|
[28] |
NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J].
Nature Communications, 2013, 4: 2807.
doi:10.1038/ncomms3807
|
[29] |
HUANG Y W, CHEN W T, TSAI W Y,
et al. Aluminum plasmonic multicolor meta-hologram[J].
Nano Letters, 2015, 15(5): 3122-3127.
doi:10.1021/acs.nanolett.5b00184
|
[30] |
WANG B, DONG F L, LI Q T,
et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J].
Nano Letters, 2016, 16(8): 5235-5240.
doi:10.1021/acs.nanolett.6b02326
|
[31] |
CHEN W T, YANG K Y, WANG C M,
et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J].
Nano Letters, 2014, 14(1): 225-230.
doi:10.1021/nl403811d
|
[32] |
WEN D D, YUE F Y, LI G X,
et al. Helicity multiplexed broadband metasurface holograms[J].
Nature Communications, 2015, 6: 8241.
doi:10.1038/ncomms9241
|
[33] |
WANG L, KRUK S, TANG H ZH,
et al. Grayscale transparent metasurface holograms[J].
Optica, 2016, 3(12): 1504-1505.
doi:10.1364/OPTICA.3.001504
|
[34] |
LESINA A C, RAMUNNO L, BERINI P. Dual-polarization plasmonic metasurface for nonlinear optics[J].
Optics Letters, 2015, 40(12): 2874-2877.
doi:10.1364/OL.40.002874
|
[35] |
NOOKALA N, LEE J, TYMCHENKO M,
et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response[J].
Optica, 2016, 3(3): 283-288.
doi:10.1364/OPTICA.3.000283
|
[36] |
SEMENIKHINA D V, CHIKOV N I, SEMENIKHIN A I,
et al.. Experimental studies of nonlinear metasurface with metamaterial substrate[C].
Proceedings of 2016 24th Telecommunications Forum,
IEEE, 2016: 562-565.
|
[37] |
WAKATSUCHI H, RUSHTON J J, LEE J,
et al. Experimental demonstration of nonlinear waveform-dependent metasurface absorber with pulsed signals[J].
Electronics Letters, 2013, 49(24): 1530-1530.
doi:10.1049/el.2013.3010
|
[38] |
JOO W J, KYOUNG J, ESFANDYARPOUR M,
et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch[J].
Science, 2020, 370(6515): 459-463.
doi:10.1126/science.abc8530
|
[39] |
SAUTTER J, STAUDE I, DECKER M,
et al. Active tuning of all-dielectric metasurfaces[J].
ACS Nano, 2015, 9(4): 4308-4315.
doi:10.1021/acsnano.5b00723
|
[40] |
DONG K CH, HONG S, DENG Y,
et al. A lithography-free and field-programmable photonic metacanvas[J].
Advanced Materials, 2018, 30(5): 1703878.
doi:10.1002/adma.201703878
|
[41] |
MIAO Z Q, WU Q, LI X,
et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J].
Physical Review X, 2015, 5(4): 041027.
doi:10.1103/PhysRevX.5.041027
|
[42] |
THYAGARAJAN K, SOKHOYAN R, ZORNBERG L,
et al. Millivolt modulation of plasmonic metasurface optical response via ionic conductance[J].
Advanced Materials, 2017, 29(31): 1701044.
doi:10.1002/adma.201701044
|
[43] |
HOWES A, WANG W Y, KRAVCHENKO I,
et al. Dynamic transmission control based on all-dielectric Huygens metasurfaces[J].
Optica, 2018, 5(7): 787-792.
doi:10.1364/OPTICA.5.000787
|
[44] |
YAO W, TANG L L, WANG J,
et al. Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons[J].
IEEE Photonics Journal, 2018, 10(4): 4800909.
|
[45] |
CAO T, WEI CH W, SIMPSON R E,
et al. Rapid phase transition of a phase-change metamaterial perfect absorber[J].
Optical Materials Express, 2013, 3(8): 1101-1110.
doi:10.1364/OME.3.001101
|
[46] |
CAO T, WEI CH W, SIMPSON R E,
et al. Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity[J].
Scientific Reports, 2014, 4: 4463.
|
[47] |
ROY T, ZHANG SH Y, JUNG I W,
et al. Dynamic metasurface lens based on MEMS technology[J].
APL Photonics, 2018, 3(2): 021302.
doi:10.1063/1.5018865
|
[48] |
SHE A, ZHANG SH Y, SHIAN S,
et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J].
Science Advances, 2018, 4(2): eaap9957.
doi:10.1126/sciadv.aap9957
|
[49] |
ARBABI E, ARBABI A, KAMALI S M,
et al. MEMS-tunable dielectric metasurface lens[J].
Nature Communications, 2018, 9: 812.
doi:10.1038/s41467-018-03155-6
|
[50] |
GAO H, WANG Y X, FAN X H,
et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate[J].
Science Advances, 2020, 6(28): eaba8595.
doi:10.1126/sciadv.aba8595
|
[51] |
LI J X, YU P, ZHANG SH,
et al. Electrically-controlled digital metasurface device for light projection displays[J].
Nature Communications, 2020, 11(1): 3574.
doi:10.1038/s41467-020-17390-3
|
[52] |
QU G Y, YANG W H, SONG Q H,
et al. Reprogrammable meta-hologram for optical encryption[J].
Nature Communications, 2020, 11(1): 5484.
doi:10.1038/s41467-020-19312-9
|
[53] |
MAITI R, PATIL C, SAADI M A S R,
et al. Strain-engineered high-responsivity MoTe
2photodetector for silicon photonic integrated circuits[J].
Nature Photonics, 2020, 14(9): 578-584.
doi:10.1038/s41566-020-0647-4
|
[54] |
WANG Z J, JING L Q, YAO K,
et al. Origami-based reconfigurable metamaterials for tunable chirality[J].
Advanced Materials, 2017, 29(27): 1700412.
doi:10.1002/adma.201700412
|
[55] |
JING L Q, WANG Z J, ZHENG B,
et al. Kirigami metamaterials for reconfigurable toroidal circular dichroism[J].
NPG Asia Materials, 2018, 10(9): 888-898.
doi:10.1038/s41427-018-0082-x
|
[56] |
LIU ZH G, DU H F, LI J F,
et al. Nano-kirigami with giant optical chirality[J].
Science Advances, 2018, 4(7): eaat4436.
doi:10.1126/sciadv.aat4436
|
[57] |
TSENG M L, LIN ZH H, KUO H Y,
et al. Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality[J].
Advanced Optical Materials, 2019, 7(15): 1900617.
doi:10.1002/adom.201900617
|
[58] |
PAN R H, LI Z C, LIU Z,
et al.. Rapid bending origami in micro/nanoscale toward a versatile 3D metasurface[J].
Laser&
Photonics Reviews, 2020, 14: 1900179.
|
[59] |
ARORA W J, SMITH H I, BARBASTATHIS G. Membrane folding by ion implantation induced stress to fabricate three-dimensional nanostructures[J].
Microelectronic Engineering, 2007, 84(5-8): 1454-1458.
doi:10.1016/j.mee.2007.01.182
|
[60] |
SAMAYOA M J, HAQUE M A, COHEN P H. Focused ion beam irradiation effects on nanoscale freestanding thin films[J].
Journal of Micromechanics and Microengineering, 2008, 18(9): 095005.
doi:10.1088/0960-1317/18/9/095005
|
[61] |
NIX W D, CLEMENS B M. Crystallite coalescence: a mechanism for intrinsic tensile stresses in thin films[J].
Journal of Materials Research, 1999, 14(8): 3467-3473.
doi:10.1557/JMR.1999.0468
|
[62] |
LIU ZH G, DU H F, LI ZH Y,
et al. Invited article: nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation[J].
APL Photonics, 2018, 3(10): 100803.
doi:10.1063/1.5043065
|
[63] |
LI J F, LIU ZH G. Focused-ion-beam-based nano-kirigami: from art to photonics[J].
Nanophotonics, 2018, 7(10): 1637-1650.
doi:10.1515/nanoph-2018-0117
|
[64] |
HAN Y, LIU ZH G, CHEN SH SH,
et al. Cascaded multilayer nano-kirigami for extensible 3D nanofabrication and visible light manipulation[J].
Photonics Research, 2020, 8(9): 1506-1511.
doi:10.1364/PRJ.398467
|
[65] |
ZHU A Y, CHEN W T, ZAIDI A,
et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures[J].
Light:
Science&
Applications, 2018, 7: 17158.
|
[66] |
ZHAO R, ZHANG L, ZHOU J,
et al. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index[J].
Physical Review B, 2011, 83(3): 035105.
doi:10.1103/PhysRevB.83.035105
|
[67] |
LIU ZH G, XU Y, JI CH Y,
et al. Fano-enhanced circular dichroism in deformable stereo metasurfaces[J].
Advanced Materials, 2020, 32(8): 1907077.
doi:10.1002/adma.201907077
|
[68] |
TANG Y T, LIU ZH G, DENG J H,
et al. Nano-kirigami metasurface with giant nonlinear optical circular dichroism[J].
Laser&
Photonics Reviews, 2020, 14(7): 2000085.
|
[69] |
LIU ZH G, LI J F, LIU ZH,
et al. Fano resonance Rabi splitting of surface plasmons[J].
Scientific Reports, 2017, 7: 8010.
doi:10.1038/s41598-017-08221-5
|
[70] |
CUI A J, LIU Z, LI J F,
et al.. Directly patterned substrate-free plasmonic "nanograter'' structures with unusual Fano resonances[J].
Light:
Science&
Applications, 2015, 4: e308.
|
[71] |
LIU ZH G, LIU ZH, LI J F,
et al. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials[J].
Scientific Reports, 2016, 6: 27817.
doi:10.1038/srep27817
|
[72] |
TIAN X M, LIU ZH G, LIN H,
et al. Five-fold plasmonic Fano resonances with giant bisignate circular dichroism[J].
Nanoscale, 2018, 10(35): 16630-16637.
doi:10.1039/C8NR05277H
|
[73] |
LIU ZH, DU SH, CUI A J,
et al. High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials[J].
Advanced Materials, 2017, 29(17): 1606298.
doi:10.1002/adma.201606298
|
[74] |
CHEN SH SH, WEI W, LIU ZH G,
et al. Reconfigurable nano-kirigami metasurfaces by pneumatic pressure[J].
Photonics Research, 2020, 8(7): 1177-1182.
doi:10.1364/PRJ.393333
|
[75] |
CHEN SH SH, LIU ZH G, DU H F,
et al. Electromechanically reconfigurable optical nano-kirigami[J].
Nature Communications, 2021, 12: 1299.
doi:10.1038/s41467-021-21565-x
|