Volume 14Issue 6
Nov. 2021
Turn off MathJax
Article Contents
XIE Yao, HUA Dao-zhu, QI Yu, SHEN Ting-ting, LIU Zhen-qiang, YE Hua-jun, LIU Wei-ping. Applications of GFC-IFC in trace multi-component gas analysis[J]. Chinese Optics, 2021, 14(6): 1378-1386. doi: 10.37188/CO.2021-0064
Citation: XIE Yao, HUA Dao-zhu, QI Yu, SHEN Ting-ting, LIU Zhen-qiang, YE Hua-jun, LIU Wei-ping. Applications of GFC-IFC in trace multi-component gas analysis[J].Chinese Optics, 2021, 14(6): 1378-1386.doi:10.37188/CO.2021-0064

Applications of GFC-IFC in trace multi-component gas analysis

doi:10.37188/CO.2021-0064
Funds:Supported by Central Government′s Guidance for Local Science and Technology Development Funds (No. 2021ZY1028)
More Information
  • Corresponding author:xie_yao3@163.com
  • Received Date:19 May 2021
  • Rev Recd Date:25 May 2021
  • Available Online:02 Jun 2021
  • Publish Date:19 Nov 2021
  • Ultra-low emission standards of flue gas emitted from stationary sources have been proposed, which creates a new challenge for Continuous Emission Monitoring (CEM). Peak carbon dioxide emissions and carbon neutrality are frequently-mentioned concepts, which means the monitoring of CO 2will eventually be necessary. It is difficult to satisfy the strict limits of ultra-low emission standards with conventional CEM systems. A multi-component trace gas analysis system based on non-dispersive infrared is promoted in this paper to monitor trace gases of continuous emission. A Gas Filter Correlation (GFC) model and Interference Filter Correlation (IFC) model were established, which can describe the relationship of optical length, center wavelength, bandwidth of the filters and gas concentration with measure and reference signals. To confirm the measurement technique of gases, the GFC technique combines with the IFC technique to achieve a double-beam path. With the help of white cells, a small-scale, and the detection limit better than 0.5 mg/m 3can be realized. Zero and span drift are no more than ±2% of the full scale. SO 2, NO, NO 2, CO and CO 2can be simultenously and continuously monitored to satisfy the requirements of ultra-low and carbon emission monitoring. This technique is helpful for obtaining factual, accurate and comprehensive CEM data.

  • loading
  • [1]
    李相贤, 徐亮, 高闽光, 等. 分析温室气体及CO 2碳同位素比值的傅里叶变换红外光谱仪[J]. 光学 精密工程,2014,22(9):2359-2368. doi:10.3788/OPE.20142209.2359

    LI X X, XU L, GAO M G, et al. Fourier transform infrared greenhouse analyzer for gases and carbon isotope ratio[J]. Optics and Precision Engineering, 2014, 22(9): 2359-2368. (in Chinese) doi:10.3788/OPE.20142209.2359
    [2]
    张志荣, 夏滑, 董凤忠, 等. 利用可调谐半导体 吸收光谱法同时在线监测多组分气体浓度[J]. 光学 精密工程,2013,21(11):2771-2777. doi:10.3788/OPE.20132111.2771

    ZHANG ZH R, XIA H, DONG F ZH, et al. Simultaneous and on-line detection of multiple gas concentration with tunable diode laser absorption spectroscopy[J]. Optics and Precision Engineering, 2013, 21(11): 2771-2777. (in Chinese) doi:10.3788/OPE.20132111.2771
    [3]
    季文海, 吕晓翠, 胡文泽, 等. TDLAS技术在烯烃生产过程中的多组分检测应用[J]. 光学 精密工程,2018,26(8):1837-1845. doi:10.3788/OPE.20182608.1837

    JI W H, LÜ X C, HU W Z, et al. Application of TDLAS technology to multicomponent detection in olefin production process[J]. Optics and Precision Engineering, 2018, 26(8): 1837-1845. (in Chinese) doi:10.3788/OPE.20182608.1837
    [4]
    SUN Y W, LIU W Q, WANG SH M, et al. Method of sensitivity improving in the non-dispersive infrared gas analysis system[J]. Chinese Optics Letters, 2011, 9(6): 060101. doi:10.3788/COL201109.060101
    [5]
    徐驰, 刘娟, 居力, 等. 非分散红外法应用于在用柴油车NO x排放检测的研究[J]. 中国环境监测,2019,35(3):28-33.

    XU CH, LIU J, JU L, et al. Research of NDIR applied on measuring NO xemission from in-use diesel vehicles[J]. Environmental Monitoring in China, 2019, 35(3): 28-33. (in Chinese)
    [6]
    刘通浩, 张守斌, 敬红, 等. 甲烷对非分散红外吸收法测定固定污染源废气中二氧化硫的干扰[J]. 中国环境监测,2020,36(6):143-149.

    LIU T H, ZHANG SH B, JING H, et al. Study on the interference of methane to the determination of sulfur dioxide in stationary pollutant exhaust gas by non-dispersive infrared absorption method[J]. Environmental Monitoring in China, 2020, 36(6): 143-149. (in Chinese)
    [7]
    李唐安, 李世阳, 张家明, 等. 基于Goertzel算法的红外气体检测方法[J]. 红外与 工程,2019,48(3):0304003. doi:10.3788/IRLA201948.0304003

    LI T A, LI SH Y, ZHANG J M, et al. Infrared detection method of gas based on Goertzel algorithm[J]. Infrared and Laser Engineering, 2019, 48(3): 0304003. (in Chinese) doi:10.3788/IRLA201948.0304003
    [8]
    高颖, 戴连奎, 朱华东, 等. 基于拉曼光谱的天然气主要组分定量分析[J]. 分析化学,2019,47(1):67-76. doi:10.1016/S1872-2040(18)61135-1

    GAO Y, DAI L K, ZHU H D, et al. Quantitative analysis of main components of natural gas based on Raman spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 67-76. (in Chinese) doi:10.1016/S1872-2040(18)61135-1
    [9]
    聂新明, 陈正毅, 宗成华, 等. 环境中挥发性污染物现场快捷检测系统研究[J]. 分析化学,2020,48(8):981-989.

    NIE X M, CHEN ZH Y, ZONG CH H, et al. A rapid on-site detection system for volatile pollutants in environment[J]. Chinese Journal of Analytical Chemistry, 2020, 48(8): 981-989. (in Chinese)
    [10]
    温国基, 戴连奎, 刘薇, 等. 基于遗传算法与线性叠加模型的混合物组成拉曼光谱定量分析[J]. 分析化学,2021,49(1):85-94.

    WEN G J, DAI L K, LIU W, et al. Raman spectroscopic quantitative analysis based on genetic algorithm and linear superposition principle[J]. Chinese Journal of Analytical Chemistry, 2021, 49(1): 85-94. (in Chinese)
    [11]
    孙友文, 刘文清, 汪世美, 等. 非分散红外多组分气体检测技术及其在CEMS中的应用[J]. 红外,2011,32(5):23-26. doi:10.3969/j.issn.1672-8785.2011.05.005

    SUN Y W, LIU W Q, WANG SH M, et al. Non-dispersive infrared multi-component gas analysis technology and it’s application in CEMS[J]. Infrared, 2011, 32(5): 23-26. (in Chinese) doi:10.3969/j.issn.1672-8785.2011.05.005
    [12]
    叶刚, 赵静, 陈建伟. 基于NDIR原理的多组分气体在线监测系统的设计与实现[J]. 计算机应用与软件,2019,36(8):115-119, 188. doi:10.3969/j.issn.1000-386x.2019.08.021

    YE G, ZHAO J, CHEN J W. Design and implementation of multicomponent gas online monitoring system based on NDIR[J]. Computer Applications and Software, 2019, 36(8): 115-119, 188. (in Chinese) doi:10.3969/j.issn.1000-386x.2019.08.021
    [13]
    熊涛, 高明, GIBSON D, 等. 新型光室结构的主流式NDIR呼吸CO 2监测系统[J]. 红外与 工程,2020,49(6):20190575. doi:10.3788/irla.30_2019-0575

    XIONG T, GAO M, GIBSON D, et al. Mainstream NDIR breathing CO 2monitoring system based on new light chamber structure[J]. Infrared and Laser Engineering, 2020, 49(6): 20190575. (in Chinese) doi:10.3788/irla.30_2019-0575
    [14]
    SEBACHER D I. A gas filter correlation monitor for CO, CH 4, and HCL[R]. NASA Technical Papers 1113. Langley Station: National Aeronautics and Space Administration, 1977: 10.
    [15]
    司福祺, 刘建国, 刘文清, 等. 基于气体相关滤波技术的非分散红外CO气体监测系统的研究[J]. 量子电子学报,2004,21(4):425-428. doi:10.3969/j.issn.1007-5461.2004.04.006

    SI F Q, LIU J G, LIU W Q, et al. Non-dispersive infrared instrument based on gas filter correlation technology for atmospheric CO monitoring[J]. Chinese Journal of Quantum Electronics, 2004, 21(4): 425-428. (in Chinese) doi:10.3969/j.issn.1007-5461.2004.04.006
    [16]
    陈晓宁, 刘建国, 司福祺, 等. 气体滤波相关技术在红外甲烷监测系统中的应用[J]. 光电工程,2008,35(4):49-52.

    CHEN X N, LIU J G, SI F Q, et al. Application of gas filter correlation technique in IR monitoring system of methane[J]. Opto-Electronic Engineering, 2008, 35(4): 49-52. (in Chinese)
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)/Tables(3)

    Article views(1453) PDF downloads(154) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map