Citation: | LI Chen-hao, MAIER Stefan A., REN Hao-ran. Optical vortices in nanophotonics[J].Chinese Optics, 2021, 14(4): 792-811.doi:10.37188/CO.2021-0066 |
[1] |
ACKLAND B, ANESKO A, BRINTHAUPT D,
et al. A single-chip, 1.6-billion, 16-b MAC/s multiprocessor DSP[J].
IEEE Journal of Solid-State Circuits, 2000, 35(3): 412-424.
doi:10.1109/4.826824
|
[2] |
DUTTA S, JENSEN R, RIECKMANN A. Viper: a multiprocessor SOC for advanced set-top box and digital TV systems[J].
IEEE Design&
Test of Computers, 2001, 18(5): 21-31.
|
[3] |
GOODACRE J, SLOSS A N. Parallelism and the ARM instruction set architecture[J].
Computer, 2005, 38(7): 42-50.
doi:10.1109/MC.2005.239
|
[4] |
KISTLER M, PERRONE M, PETRINI F. Cell multiprocessor communication network: built for speed[J].
IEEE Micro, 2006, 26(3): 10-23.
doi:10.1109/MM.2006.49
|
[5] |
POLITI A, CRYAN M J, RARITY J G,
et al. Silica-on-silicon waveguide quantum circuits[J].
Science, 2008, 320(5876): 646-649.
doi:10.1126/science.1155441
|
[6] |
POLITI A, MATTHEWS J C F, O'BRIEN J L. Shor's quantum factoring algorithm on a photonic chip[J].
Science, 2009, 325(5945): 1221.
doi:10.1126/science.1173731
|
[7] |
SMITH B J, KUNDYS D, THOMAS-PETER N,
et al. Phase-controlled integrated photonic quantum circuits[J].
Optics Express, 2009, 17(16): 13516-13525.
doi:10.1364/OE.17.013516
|
[8] |
SILVERSTONE J W, BONNEAU D, OHIRA K,
et al. On-chip quantum interference between silicon photon-pair sources[J].
Nature Photonics, 2014, 8(2): 104-108.
doi:10.1038/nphoton.2013.339
|
[9] |
PERUZZO A, MCCLEAN J, SHADBOLT P,
et al. A variational eigenvalue solver on a photonic quantum processor[J].
Nature Communications, 2014, 5: 4213.
doi:10.1038/ncomms5213
|
[10] |
CAROLAN J, HARROLD C, SPARROW C,
et al. Universal linear optics[J].
Science, 2015, 349(6249): 711-716.
doi:10.1126/science.aab3642
|
[11] |
PAESANI S, DING Y H, SANTAGATI R,
et al. Generation and sampling of quantum states of light in a silicon chip[J].
Nature Physics, 2019, 15(9): 925-929.
doi:10.1038/s41567-019-0567-8
|
[12] |
ZIJLSTRA P, CHON J W M, GU M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J].
Nature, 2009, 459(7245): 410-413.
doi:10.1038/nature08053
|
[13] |
LI X P, LAN T H, TIEN C H,
et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J].
Nature Communications, 2012, 3: 998.
doi:10.1038/ncomms2006
|
[14] |
LI X P, REN H R, CHEN X,
et al. A thermally photoreduced graphene oxides for three-dimensional holographic images[J].
Nature Communications, 2015, 6: 6984.
doi:10.1038/ncomms7984
|
[15] |
HUANG L L, MÜHLENBERND H, LI X W,
et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J].
Advanced Materials, 2015, 27(41): 6444-6449.
doi:10.1002/adma.201502541
|
[16] |
SHEN B, WANG P, POLSON R,
et al. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm
2footprint[J].
Nature Photonics, 2015, 9(6): 378-382.
doi:10.1038/nphoton.2015.80
|
[17] |
MONTELONGO Y, TENORIO-PEARL J O, WILLIAMS C,
et al. Plasmonic nanoparticle scattering for color holograms[J].
Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12679-12683.
doi:10.1073/pnas.1405262111
|
[18] |
YUN H, LEE S Y, HONG K,
et al. Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity[J].
Nature Communications, 2015, 6: 7133.
doi:10.1038/ncomms8133
|
[19] |
DENG R R, QIN F, CHEN R F,
et al. Temporal full-colour tuning through non-steady-state upconversion[J].
Nature Nanotechnology, 2015, 10(3): 237-242.
doi:10.1038/nnano.2014.317
|
[20] |
PIGGOTT A Y, LU J, LAGOUDAKIS K G,
et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer[J].
Nature Photonics, 2015, 9(6): 374-377.
doi:10.1038/nphoton.2015.69
|
[21] |
LAUX E, GENET C, SKAULI T,
et al. Plasmonic photon sorters for spectral and polarimetric imaging[J].
Nature Photonics, 2008, 2(3): 161-164.
doi:10.1038/nphoton.2008.1
|
[22] |
LU Y Q, ZHAO J B, ZHANG R,
et al. Tunable lifetime multiplexing using luminescent nanocrystals[J].
Nature Photonics, 2013, 8(1): 32-36.
|
[23] |
REN H R, LI X P, ZHANG Q M,
et al. On-chip noninterference angular momentum multiplexing of broadband light[J].
Science, 2016, 352(6287): 805-809.
doi:10.1126/science.aaf1112
|
[24] |
YUE Z J, REN H R, WEI SH B,
et al. Angular-momentum nanometrology in an ultrathin plasmonic topological insulator film[J].
Nature Communications, 2018, 9(1): 4413.
doi:10.1038/s41467-018-06952-1
|
[25] |
POYNTING J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J].
Proceedings of the Royal Society A:
Mathematical,
Physical and Engineering Sciences, 1909, 82(557): 560-567.
|
[26] |
BETH R A. Mechanical detection and measurement of the angular momentum of light[J].
Physical Review, 1936, 50(2): 115-125.
doi:10.1103/PhysRev.50.115
|
[27] |
O'NEIL A T, MACVICAR I, ALLEN L,
et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam[J].
Physical Review Letters, 2002, 88(5): 053601.
doi:10.1103/PhysRevLett.88.053601
|
[28] |
ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C,
et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J].
Physical Review A, 1992, 45(11): 8185-8189.
doi:10.1103/PhysRevA.45.8185
|
[29] |
SIT A, BOUCHARD F, FICKLER R,
et al. High-dimensional intracity quantum cryptography with structured photons[J].
Optica, 2017, 4(9): 1006-1010.
doi:10.1364/OPTICA.4.001006
|
[30] |
NAGALI E, SANSONI L, SCIARRINO F,
et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence[J].
Nature Photonics, 2009, 3(12): 720-723.
doi:10.1038/nphoton.2009.214
|
[31] |
WANG X L, CAI X D, SU Z E,
et al. Quantum teleportation of multiple degrees of freedom of a single photon[J].
Nature, 2015, 518(7540): 516-519.
doi:10.1038/nature14246
|
[32] |
WILLNER A E, LIU C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links[J].
Nanophotonics, 2020, 10(1): 225-233.
doi:10.1515/nanoph-2020-0435
|
[33] |
GIBSON G, COURTIAL J, PADGETT M J,
et al. Free-space information transfer using light beams carrying orbital angular momentum[J].
Optics Express, 2004, 12(22): 5448-5456.
doi:10.1364/OPEX.12.005448
|
[34] |
HECKENBERG N R, MCDUFF R, SMITH C P,
et al. Generation of optical phase singularities by computer-generated holograms[J].
Optics Letters, 1992, 17(3): 221-223.
doi:10.1364/OL.17.000221
|
[35] |
BEIJERSBERGEN M W, COERWINKEL R P C, KRISTENSEN M,
et al. Helical-wavefront laser beams produced with a spiral phaseplate[J].
Optics Communications, 1994, 112(5-6): 321-327.
doi:10.1016/0030-4018(94)90638-6
|
[36] |
YU N F, GENEVET P, KATS M A,
et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J].
Science, 2011, 334(6054): 333-337.
doi:10.1126/science.1210713
|
[37] |
KARIMI E, SCHULZ S A, DE LEON I,
et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J].
Light:
Science&
Applications, 2014, 3(5): e167.
|
[38] |
MAGUID E, YULEVICH I, VEKSLER D,
et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J].
Science, 2016, 352(6290): 1202-1206.
doi:10.1126/science.aaf3417
|
[39] |
DEVLIN R C, AMBROSIO A, RUBIN N A,
et al. Arbitrary spin-to-orbital angular momentum conversion of light[J].
Science, 2017, 358(6365): 896-901.
doi:10.1126/science.aao5392
|
[40] |
DEVLIN R C, AMBROSIO A, WINTZ D,
et al. Spin-to-orbital angular momentum conversion in dielectric metasurfaces[J].
Optics Express, 2017, 25(1): 377-393.
doi:10.1364/OE.25.000377
|
[41] |
CAI X L, WANG J W, STRAIN M J,
et al. Integrated compact optical vortex beam emitters[J].
Science, 2012, 338(6105): 363-366.
doi:10.1126/science.1226528
|
[42] |
XIE ZH W, LEI T, LI F,
et al. Ultra-broadband on-chip twisted light emitter for optical communications[J].
Light:
Science&
Applications, 2018, 7: 18001.
|
[43] |
MIAO P, ZHANG ZH F, SUN J B,
et al. Orbital angular momentum microlaser[J].
Science, 2016, 353(6298): 464-467.
doi:10.1126/science.aaf8533
|
[44] |
CARLON ZAMBON N, ST-JEAN P, MILIĆEVIĆ M,
et al. Optically controlling the emission chirality of microlasers[J].
Nature Photonics, 2019, 13(4): 283-288.
doi:10.1038/s41566-019-0380-z
|
[45] |
HUANG C, ZHANG CH, XIAO SH M,
et al. Ultrafast control of vortex microlasers[J].
Science, 2020, 367(6481): 1018-1021.
doi:10.1126/science.aba4597
|
[46] |
KIM H, PARK J, CHO S W,
et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens[J].
Nano Letters, 2010, 10(2): 529-536.
doi:10.1021/nl903380j
|
[47] |
DAI Y N, ZHOU ZH K, GHOSH A,
et al.. Ultrafast microscopy of a plasmonic spin skyrmion[J]. arXiv: 1912.03826, 2019.
|
[48] |
SPEKTOR G, KILBANE D, MAHRO A K,
et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices[J].
Science, 2017, 355(6330): 1187-1191.
doi:10.1126/science.aaj1699
|
[49] |
GENEVET P, LIN J, KATS M A,
et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J].
Nature Communications, 2012, 3: 1278.
doi:10.1038/ncomms2293
|
[50] |
JI ZH R, LIU W J, KRYLYUK S,
et al. Photocurrent detection of the orbital angular momentum of light[J].
Science, 2020, 368(6492): 763-767.
doi:10.1126/science.aba9192
|
[51] |
POZAR D M, TARGONSKI S D. A shared-aperture dual-band dual-polarized microstrip array[J].
IEEE Transactions on Antennas and Propagation, 2001, 49(2): 150-157.
doi:10.1109/8.914255
|
[52] |
LAGER I E, TRAMPUZ C, SIMEONI M,
et al. Interleaved array antennas for FMCW radar applications[J].
IEEE Transactions on Antennas and Propagation, 2009, 57(8): 2486-2490.
doi:10.1109/TAP.2009.2024573
|
[53] |
COMAN C I, LAGER I E, LIGTHART L P. The design of shared aperture antennas consisting of differently sized elements[J].
IEEE Transactions on Antennas and Propagation, 2006, 54(2): 376-383.
doi:10.1109/TAP.2005.863382
|
[54] |
SIMEONI M, LAGER I E, COMAN C I,
et al. Implementation of polarization agility in planar phased-array antennas by means of interleaved subarrays[J].
Radio Science, 2009, 44(5): RS5013.
|
[55] |
POCHI Y, CLAIRE G.
Optics of Liquid Crystal Displays[M]. Canada: Wiley, 2009.
|
[56] |
DE VRIES H. Rotatory power and other optical properties of certain liquid crystals[J].
Acta Crystallographica, 1951, 4(3): 219-226.
doi:10.1107/S0365110X51000751
|
[57] |
KOBASHI J, YOSHIDA H, OZAKI M. Planar optics with patterned chiral liquid crystals[J].
Nature Photonics, 2016, 10(6): 389-392.
doi:10.1038/nphoton.2016.66
|
[58] |
RAFAYELYAN M, TKACHENKO G, BRASSELET E. Reflective spin-orbit geometric phase from chiral anisotropic optical media[J].
Physical Review Letters, 2016, 116(25): 253902.
doi:10.1103/PhysRevLett.116.253902
|
[59] |
CHEN P, MA L L, HU W,
et al. Chirality invertible superstructure mediated active planar optics[J].
Nature Communications, 2019, 10(1): 2518.
doi:10.1038/s41467-019-10538-w
|
[60] |
LI SH Q, XU X W, MARUTHIYODAN VEETIL R,
et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J].
Science, 2019, 364(6445): 1087-1090.
doi:10.1126/science.aaw6747
|
[61] |
BUCHNEV O, PODOLIAK N, KACZMAREK M,
et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch[J].
Advanced Optical Materials, 2015, 3(5): 674-679.
doi:10.1002/adom.201400494
|
[62] |
DECKER M, KREMERS C, MINOVICH A,
et al. Electro-optical switching by liquid-crystal controlled metasurfaces[J].
Optics Express, 2013, 21(7): 8879-8885.
doi:10.1364/OE.21.008879
|
[63] |
KOMAR A, PANIAGUA-DOMÍNGUEZ R, MIROSHNICHENKO A,
et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J].
ACS Photonics, 2018, 5(5): 1742-1748.
doi:10.1021/acsphotonics.7b01343
|
[64] |
ZHANG Y F, FOWLER C, LIANG J H,
et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J].
Nature Nanotechnology, 2021.
|
[65] |
CHU CH H, TSENG M L, CHEN J,
et al. Active dielectric metasurface based on phase-change medium[J].
Laser&
Photonics Reviews, 2016, 10(6): 986-994.
|
[66] |
WANG Q, ROGERS E T F, GHOLIPOUR B,
et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J].
Nature Photonics, 2016, 10(1): 60-65.
doi:10.1038/nphoton.2015.247
|
[67] |
BERTO P, PHILIPPET L, OSMOND J,
et al. Tunable and free-form planar optics[J].
Nature Photonics, 2019, 13(9): 649-656.
doi:10.1038/s41566-019-0486-3
|
[68] |
WANG B, LIU W ZH, ZHAO M X,
et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J].
Nature Photonics, 2020, 14(10): 623-628.
doi:10.1038/s41566-020-0658-1
|
[69] |
DOELEMAN H M, MONTICONE F, DEN HOLLANDER W,
et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J].
Nature Photonics, 2018, 12(7): 397-401.
doi:10.1038/s41566-018-0177-5
|
[70] |
ZHANG Y W, CHEN A, LIU W ZH,
et al. Observation of polarization vortices in momentum space[J].
Physical Review Letters, 2018, 120(18): 186103.
doi:10.1103/PhysRevLett.120.186103
|
[71] |
CHIASERA A, DUMEIGE Y, FÉRON P,
et al. Spherical whispering-gallery-mode microresonators[J].
Laser&
Photonics Reviews, 2010, 4(3): 457-482.
|
[72] |
ZHEN B, HSU C W, LU L,
et al. Topological nature of optical bound states in the continuum[J].
Physical Review Letters, 2014, 113(25): 257401.
doi:10.1103/PhysRevLett.113.257401
|
[73] |
SPEKTOR G, KILBANE D, MAHRO A K,
et al. Mixing the light spin with plasmon orbit by nonlinear light-matter interaction in gold[J].
Physical Review X, 2019, 9(2): 021031.
doi:10.1103/PhysRevX.9.021031
|
[74] |
SHI P, DU L P, YUAN X C. Strong spin–orbit interaction of photonic skyrmions at the general optical interface[J].
Nanophotonics, 2020, 9(15): 4619-4628.
doi:10.1515/nanoph-2020-0430
|
[75] |
DAI Y N, ZHOU ZH K, GHOSH A,
et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales[J].
Nature, 2020, 588(7839): 616-619.
doi:10.1038/s41586-020-3030-1
|
[76] |
TSESSES S, OSTROVSKY E, COHEN K,
et al. Optical skyrmion lattice in evanescent electromagnetic fields[J].
Science, 2018, 361(6406): 993-996.
doi:10.1126/science.aau0227
|
[77] |
YANG W R, YANG H H, CAO Y SH,
et al. Photonic orbital angular momentum transfer and magnetic skyrmion rotation[J].
Optics Express, 2018, 26(7): 8778-8790.
doi:10.1364/OE.26.008778
|
[78] |
DU L P, YANG A P, ZAYATS A V,
et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum[J].
Nature Physics, 2019, 15(7): 650-654.
doi:10.1038/s41567-019-0487-7
|
[79] |
DAVIS T J, JANOSCHKA D, DREHER P,
et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution[J].
Science, 2020, 368(6489): eaba6415.
doi:10.1126/science.aba6415
|
[80] |
MARRUCCI L, MANZO C, PAPARO D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J].
Physical Review Letters, 2006, 96(16): 163905.
doi:10.1103/PhysRevLett.96.163905
|
[81] |
NAGALI E, SCIARRINO F, DE MARTINI F,
et al. Quantum information transfer from spin to orbital angular momentum of photons[J].
Physical Review Letters, 2009, 103(1-3): 013601.
|
[82] |
BLIOKH K Y, OSTROVSKAYA E A, ALONSO M A,
et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems[J].
Optics Express, 2011, 19(27): 26132-26149.
doi:10.1364/OE.19.026132
|
[83] |
MIRHOSSEINI M, MALIK M, SHI ZH M,
et al. Efficient separation of the orbital angular momentum eigenstates of light[J].
Nature Communications, 2013, 4: 2781.
doi:10.1038/ncomms3781
|
[84] |
WEST P R, ISHII S, NAIK GV,
et al. Searching for better plasmonic materials[J].
Laser&
Photonics Reviews, 2010, 4(6): 795-808.
|
[85] |
NAIK G V, SHALAEV V M, BOLTASSEVA A. Alternative plasmonic materials: beyond gold and silver[J].
Advanced Materials, 2013, 25(24): 3264-3294.
doi:10.1002/adma.201205076
|
[86] |
REN H R, GU M. Angular momentum-reversible near-unity bisignate circular dichroism[J].
Laser&
Photonics Reviews, 2018, 12(5): 1700255.
|
[87] |
OU J Y, SO J K, ADAMO G,
et al. Ultraviolet and visible range plasmonics in the topological insulator Bi
1.5Sb
0.5Te
1.8Se
1.2[J].
Nature Communications, 2014, 5: 5139.
doi:10.1038/ncomms6139
|
[88] |
YUE Z J, XUE G L, LIU J,
et al. Nanometric holograms based on a topological insulator material[J].
Nature Communications, 2017, 8: 15354.
doi:10.1038/ncomms15354
|
[89] |
DUBROVKIN A M, ADAMO G, YIN J,
et al. Visible range plasmonic modes on topological insulator nanostructures[J].
Advanced Optical Materials, 2017, 5(3): 1600768.
doi:10.1002/adom.201600768
|
[90] |
MEI SH T, HUANG K, LIU H,
et al. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits[J].
Nanoscale, 2016, 8(4): 2227-2233.
doi:10.1039/C5NR07374J
|
[91] |
ASHKIN A, DZIEDZIC J M, BJORKHOLM J E,
et al. Observation of a single-beam gradient force optical trap for dielectric particles[J].
Optics Letters, 1986, 11(5): 288-290.
doi:10.1364/OL.11.000288
|
[92] |
HE H, HECKENBERG N R, RUBINSZTEIN-DUNLOP H. Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms[J].
Journal of Modern Optics, 1995, 42(1): 217-223.
doi:10.1080/09500349514550171
|
[93] |
FRIESE M E J, NIEMINEN T A, HECKENBERG N R,
et al. Optical alignment and spinning of laser-trapped microscopic particles[J].
Nature, 1998, 394(6691): 348-350.
doi:10.1038/28566
|
[94] |
GRIER D G. A revolution in optical manipulation[J].
Nature, 2003, 424(6950): 810-816.
doi:10.1038/nature01935
|
[95] |
CHEN M ZH, MAZILU M, ARITA Y,
et al. Optical trapping with a perfect vortex beam[J].
Proceedings of SPIE, 2014, 9164: 91640K.
|
[96] |
ZHANG Y Q, SHI W, SHEN ZH,
et al. A plasmonic spanner for metal particle manipulation[J].
Scientific Reports, 2015, 5: 15446.
doi:10.1038/srep15446
|
[97] |
FICKLER R, LAPKIEWICZ R, HUBER M,
et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information[J].
Nature Communications, 2014, 5: 4502.
doi:10.1038/ncomms5502
|
[98] |
MAIR A, VAZIRI A, WEIHS G,
et al. Entanglement of the orbital angular momentum states of photons[J].
Nature, 2001, 412(6844): 313-316.
doi:10.1038/35085529
|
[99] |
KARIMI E, BOYD R W. PHYSICS. Classical entanglement?[J].
Science, 2015, 350(6265): 1172-1173.
doi:10.1126/science.aad7174
|
[100] |
TONINELLI E, NDAGANO B, VALLÉS A,
et al. Concepts in quantum state tomography and classical implementation with intense light: a tutorial[J].
Advances in Optics and Photonics, 2019, 11(1): 67-134.
doi:10.1364/AOP.11.000067
|
[101] |
BOZINOVIC N, YUE Y, REN Y X,
et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J].
Science, 2013, 340(6140): 1545-1548.
doi:10.1126/science.1237861
|
[102] |
WANG J, YANG J Y, FAZAL I M,
et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J].
Nature Photonics, 2012, 6(7): 488-496.
doi:10.1038/nphoton.2012.138
|
[103] |
YAN Y, XIE G D, LAVERY M P J,
et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J].
Nature Communications, 2014, 5: 4876.
doi:10.1038/ncomms5876
|
[104] |
LEI T, ZHANG M, LI Y R,
et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J].
Light:
Science&
Applications, 2015, 4(3): e257.
|
[105] |
HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J].
Optics Letters, 1994, 19(11): 780-782.
doi:10.1364/OL.19.000780
|
[106] |
SCOTT T F, KOWALSKI B A, SULLIVAN A C,
et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J].
Science, 2009, 324(5929): 913-917.
doi:10.1126/science.1167610
|
[107] |
LI L J, GATTASS R R, GERSHGOREN E,
et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J].
Science, 2009, 324(5929): 910-913.
doi:10.1126/science.1168996
|
[108] |
GAN Z S, CAO Y Y, EVANS R A,
et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J].
Nature Communications, 2013, 4: 2061.
doi:10.1038/ncomms3061
|
[109] |
FISCHER J, WEGENER M. Three-dimensional optical laser lithography beyond the diffraction limit[J].
Laser&
Photonics Reviews, 2013, 7(1): 22-44.
|
[110] |
ISHIKAWA-ANKERHOLD H C, ANKERHOLD R, DRUMMEN G P C. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM[J].
Molecules, 2012, 17(4): 4047-4132.
doi:10.3390/molecules17044047
|
[111] |
JOHNSON S A. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology[J].
WIREs Nanomedicine and Nanobiotechnology, 2015, 7(3): 266-281.
doi:10.1002/wnan.1300
|
[112] |
FÜRHAPTER S, JESACHER A, BERNET S,
et al. Spiral phase contrast imaging in microscopy[J].
Optics Express, 2005, 13(3): 689-694.
doi:10.1364/OPEX.13.000689
|
[113] |
JESACHER A, FÜRHAPTER S, BERNET S,
et al. Shadow effects in spiral phase contrast microscopy[J].
Physical Review Letters, 2005, 94(23): 233902.
doi:10.1103/PhysRevLett.94.233902
|
[114] |
SITU G, PEDRINI G, OSTEN W. Spiral phase filtering and orientation-selective edge detection/enhancement[J].
Journal of the Optical Society of America A, 2009, 26(8): 1788-1797.
doi:10.1364/JOSAA.26.001788
|
[115] |
ZHANG Y Y, WANG J K, ZHANG W H,
et al. LED-based visible light communication for color image and audio transmission utilizing orbital angular momentum superposition modes[J].
Optics Express, 2018, 26(13): 17300-17311.
doi:10.1364/OE.26.017300
|
[116] |
NEARY P L, WATNIK A T, JUDD K P,
et al. Machine learning-based signal degradation models for attenuated underwater optical communication OAM beams[J].
Optics Communications, 2020, 474: 126058.
doi:10.1016/j.optcom.2020.126058
|
[117] |
WEN D D, YUE F Y, LI G X,
et al. Helicity multiplexed broadband metasurface holograms[J].
Nature Communications, 2015, 6: 8241.
doi:10.1038/ncomms9241
|
[118] |
ZHAO W Y, LIU B Y, JIANG H,
et al. Full-color hologram using spatial multiplexing of dielectric metasurface[J].
Optics Letters, 2016, 41(1): 147-150.
doi:10.1364/OL.41.000147
|
[119] |
FANG X Y, REN H R, GU M. Orbital angular momentum holography for high-security encryption[J].
Nature Photonics, 2020, 14(2): 102-108.
doi:10.1038/s41566-019-0560-x
|
[120] |
KHORASANINEJAD M, AMBROSIO A, KANHAIYA P,
et al. Broadband and chiral binary dielectric meta-holograms[J].
Science Advances, 2016, 2(5): e1501258.
doi:10.1126/sciadv.1501258
|
[121] |
HUO P CH, ZHANG CH, ZHU W Q,
et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J].
Nano Letters, 2020, 20(4): 2791-2798.
doi:10.1021/acs.nanolett.0c00471
|
[122] |
REN H R, BRIERE G, FANG X Y,
et al. Metasurface orbital angular momentum holography[J].
Nature Communications, 2019, 10(1): 2986.
doi:10.1038/s41467-019-11030-1
|
[123] |
REN H R, FANG X Y, JANG J,
et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J].
Nature Nanotechnology, 2020, 15(11): 948-955.
doi:10.1038/s41565-020-0768-4
|
[124] |
ASHKIN A. Acceleration and trapping of particles by radiation pressure[J].
Physical Review Letters, 1970, 24(4): 156-159.
doi:10.1103/PhysRevLett.24.156
|
[125] |
FRIESE M E J, ENGER J, RUBINSZTEIN-DUNLOP H,
et al. Optical angular-momentum transfer to trapped absorbing particles[J].
Physical Review A, 1996, 54(2): 1593-1596.
doi:10.1103/PhysRevA.54.1593
|
[126] |
SIMPSON N B, DHOLAKIA K, ALLEN L,
et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner[J].
Optics Letters, 1997, 22(1): 52-54.
doi:10.1364/OL.22.000052
|
[127] |
WOERDEMANN M, ALPMANN C, DENZ C. Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams[J].
Applied Physics Letters, 2011, 98(11): 111101.
doi:10.1063/1.3561770
|
[128] |
CHAPIN S C, GERMAIN V, DUFRESNE E R. Automated trapping, assembly, and sorting with holographic optical tweezers[J].
Optics Express, 2006, 14(26): 13095-13100.
doi:10.1364/OE.14.013095
|
[129] |
PADGETT M, BOWMAN R. Tweezers with a twist[J].
Nature Photonics, 2011, 5(6): 343-348.
doi:10.1038/nphoton.2011.81
|
[130] |
TORNER L, TORRES J P, CARRASCO S. Digital spiral imaging[J].
Optics Express, 2005, 13(3): 873-881.
doi:10.1364/OPEX.13.000873
|
[131] |
KOZAWA Y, MATSUNAGA D, SATO S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J].
Optica, 2018, 5(2): 86-92.
doi:10.1364/OPTICA.5.000086
|
[132] |
CHEN L X, LEI J J, ROMERO J. Quantum digital spiral imaging[J].
Light:
Science&
Applications, 2014, 3(3): e153.
|
[133] |
GOODMAN J W.
Introduction to Fourier Optics[M]. 3rd ed. Greenwood Village: Roberts & Company Publishers, 2005.
|
[134] |
CRABTREE K, DAVIS J A, MORENO I. Optical processing with vortex-producing lenses[J].
Applied Optics, 2004, 43(6): 1360-1367.
doi:10.1364/AO.43.001360
|
[135] |
JESACHER A, FÜRHAPTER S, BERNET S,
et al. Spiral interferogram analysis[J].
Journal of the Optical Society of America A, 2006, 23(6): 1400-1409.
doi:10.1364/JOSAA.23.001400
|
[136] |
RITSCH-MARTE M. Orbital angular momentum light in microscopy[J].
Philosophical Transactions of the Royal Society A:
Mathematical,
Physical and Engineering Science, 2017, 375(2087): 20150437.
doi:10.1098/rsta.2015.0437
|
[137] |
BALTHASAR MUELLER J P, RUBIN N A, DEVLIN R C,
et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J].
Physical Review Letters, 2017, 118(11): 113901.
doi:10.1103/PhysRevLett.118.113901
|
[138] |
LI X, CHEN L W, LI Y,
et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J].
Science Advances, 2016, 2(11): e1601102.
doi:10.1126/sciadv.1601102
|
[139] |
KAMALI S M, ARBABI E, ARBABI A,
et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles[J].
Physical Review X, 2017, 7(4): 041056.
doi:10.1103/PhysRevX.7.041056
|
[140] |
NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J].
Nature Communications, 2013, 4(1): 2807.
doi:10.1038/ncomms3807
|
[141] |
HUANG L L, CHEN X ZH, MÜHLENBERND H,
et al. Three-dimensional optical holography using a plasmonic metasurface[J].
Nature Communications, 2013, 4: 2808.
doi:10.1038/ncomms3808
|
[142] |
ZHENG G X, MÜHLENBERND H, KENNEY M,
et al. Metasurface holograms reaching 80% efficiency[J].
Nature Nanotechnology, 2015, 10(4): 308-312.
doi:10.1038/nnano.2015.2
|
[143] |
WANG L, KRUK S, TANG H ZH,
et al. Grayscale transparent metasurface holograms[J].
Optica, 2016, 3(12): 1504-1505.
doi:10.1364/OPTICA.3.001504
|
[144] |
YAO A M, PADGETT M J. Orbital angular momentum: origins, behavior and applications[J].
Advances in Optics and Photonics, 2011, 3(2): 161-204.
doi:10.1364/AOP.3.000161
|
[145] |
SHEN Y J, WANG X J, XIE ZH W,
et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J].
Light:
Science&
Applications, 2019, 8: 90.
|