Volume 14Issue 6
Nov. 2021
Turn off MathJax
Article Contents
WU Hai-bin, WEI Xi-ying, LIU Mei-hong, WANG Ai-li, LIU He, IWAHORI Yu-ji. Improved YOLOv4 for dangerous goods detection in X-ray inspection combined with atrous convolution and transfer learning[J]. Chinese Optics, 2021, 14(6): 1417-1425. doi: 10.37188/CO.2021-0078
Citation: WU Hai-bin, WEI Xi-ying, LIU Mei-hong, WANG Ai-li, LIU He, IWAHORI Yu-ji. Improved YOLOv4 for dangerous goods detection in X-ray inspection combined with atrous convolution and transfer learning[J].Chinese Optics, 2021, 14(6): 1417-1425.doi:10.37188/CO.2021-0078

Improved YOLOv4 for dangerous goods detection in X-ray inspection combined with atrous convolution and transfer learning

doi:10.37188/CO.2021-0078
Funds:Supported by National Natural Science Foundation of China (No. 61671190, No. 61801149); Japan Society for the Promotion of Science (No. #20K11873)
More Information
  • Corresponding author:aili925@hrbust.edu.cn
  • Received Date:13 Apr 2021
  • Rev Recd Date:11 May 2021
  • Available Online:11 Aug 2021
  • Publish Date:19 Nov 2021
  • In response to the complex backgrounds of X-ray security images, serious overlap and occlusion phenomena, and the large differences in the placement and shape of dangerous goods, this paper improves the network structure of YOLOv4 for dangerous objects detection by combining atrous convolution with the Atrous Space Pyramid Pooling (ASPP) model to increase receptive field and aggregate multi-scale context information. Then, the K-means clustering method is used to generate an initial candidate frame that is more suitable for dangerous goods detection in X-ray inspection images. Cosine annealing is used to optimize the learning rate in model training to further accelerate model convergence and improve model detection accuracy. The experimental results show that the proposed ASPP-YOLOv4 in this paper can obtain an mAP of 85.23% on the SIXRay dataset. The model can effectively reduce the false detection rate of dangerous goods in X-ray security images and improve the detection ability of small targets.

  • loading
  • [1]
    鞠默然, 罗海波, 刘广琦, 等. 采用空间注意力机制的红外弱小目标检测网络[J]. 光学 精密工程,2021,29(4):843-853. doi:10.37188/OPE.20212904.0843

    JU M R, LUO H B, LIU G Q, et al. Infrared dim and small target detection network based on spatial attention mechanism[J]. Optics and Precision Engineering, 2021, 29(4): 843-853. (in Chinese) doi:10.37188/OPE.20212904.0843
    [2]
    马立, 巩笑天, 欧阳航空. Tiny YOLOV3目标检测改进[J]. 光学 精密工程,2020,28(4):988-995.

    MA L, GONG X T, OUYANG H K. Improvement of Tiny YOLOV3 target detection[J]. Optics and Precision Engineering, 2020, 28(4): 988-995. (in Chinese)
    [3]
    MERY D, SVEC E, ARIAS M, et al. Modern computer vision techniques for X-ray testing in baggage inspection[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(4): 682-692. doi:10.1109/TSMC.2016.2628381
    [4]
    AYDIN I, KARAKOSE M, AKIN E. A new approach for baggage inspection by using deep convolutional neural networks[C]. 2018 International Conference on Artificial Intelligence and Data Processing( AIDP), IEEE, 2018: 1-6.
    [5]
    MORRIS T, CHIEN T, GOODMAN E. Convolutional neural networks for automatic threat detection in security X-ray images[C]. 2018 17th IEEE International Conference on Machine Learning and Applications( ICMLA), IEEE, 2018: 285-292.
    [6]
    AKCAY S, KUNDEGORSKI M E, WILLCOCKS C G, et al. Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(9): 2203-2215. doi:10.1109/TIFS.2018.2812196
    [7]
    AKÇAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection[C]. Proceedings of 2019 International Joint Conference on Neural Networks( IJCNN), IEEE, 2019: 1-8.
    [8]
    GALVEZ R L, DADIOS E P, BANDALA A A, et al.. Threat object classification in X-ray images using transfer learning[C]. Proceedings of 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management( HNICEM), IEEE, 2018: 1-5.
    [9]
    唐浩漾, 王燕, 张小媛, 等. 基于特征金字塔的X光机危险品检测算法[J]. 西安邮电大学学报,2020,25(2):58-63.

    TANG H Y, WANG Y, ZHANG X Y, et al. Dangerous goods detection algorithm by X-ray machine based on feature pyramid[J]. Journal of Xi'an University of Posts and Telecommunications, 2020, 25(2): 58-63. (in Chinese)
    [10]
    张友康, 苏志刚, 张海刚, 等. X光安检图像多尺度违禁品检测[J]. 信号处理,2020,36(7):1096-1106.

    ZHANG Y K, SU ZH G, ZHANG H G, et al. Multi-scale prohibited item detection in X-ray security image[J]. Journal of Signal Processing, 2020, 36(7): 1096-1106. (in Chinese)
    [11]
    郭守向, 张良. Yolo-C: 基于单阶段网络的X光图像违禁品检测[J]. 与光电子学进展,2021,58(8):0810003.

    GUO SH X, ZHANG L. Yolo-C: one-stage network for prohibited items detection within X-ray images[J]. Laser& Optoelectronics Progress, 2021, 58(8): 0810003. (in Chinese)
    [12]
    ZHU Y, ZHANG Y T, ZHANG H G, et al. Data augmentation of X-ray images in baggage inspection based on generative adversarial networks[J]. IEEE Access, 2020, 8: 86536-86544. doi:10.1109/ACCESS.2020.2992861
    [13]
    陈科峻, 张叶. 基于YOLO-v3模型压缩的卫星图像船只实时检测[J]. 液晶与显示,2020,35(11):1168-1176. doi:10.37188/YJYXS20203511.1168

    CHEN K J, ZHANG Y. Real-time ship detection in satellite images based on YOLO-v3 model compression[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(11): 1168-1176. (in Chinese) doi:10.37188/YJYXS20203511.1168
    [14]
    REDMON J, DIVVALA S, GIRSHICK R, et al.. You only look once: unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition( CVPR), IEEE, 2016: 779-788.
    [15]
    刘杨帆, 曹立华, 李宁, 等. 基于YOLOv4的空间红外弱目标检测[J]. 液晶与显示,2021,36(4):615-623. doi:10.37188/CJLCD.2020-0227

    LIU Y F, CAO L H, LI N, et al. Detection of space infrared weak target based on YOLOv4[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(4): 615-623. (in Chinese) doi:10.37188/CJLCD.2020-0227
    [16]
    BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4: optimal speed and accuracy of object detection[J/OL]. arXiv: 2004.10934, 2020(2020-04-23). https://arxiv.org/abs/2004.10934.
    [17]
    MIAO C J, XIE L X, WAN F, et al.. SIXray: A large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition( CVPR), IEEE, 2019: 2114-2123.
    [18]
    REDMON J, FARHADI A.YOLOv3: an incremental improvement[J]. arXiv e-prints arXiv: 1804.02767, 2018.
    [19]
    ZHAO Q J, SHENG T, WANG Y T, et al. M2Det: a single-shot object detector based on multi-level feature pyramid network[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 9259-9266.
    [20]
    LIU W, ANGUELOV D, ERHAN D, et al.. SSD: single shot multibox detector[C]. 14th European Conference on Computer Vision( CVPR), Springer, 2016: 21-37.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)/Tables(6)

    Article views(1620) PDF downloads(157) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map