Citation: | XIAO Xing-jian, ZHU Shi-ning, LI Tao. Performance analysis of the multiwavelength achromatic metalens[J].Chinese Optics, 2021, 14(4): 823-830.doi:10.37188/CO.2021-0102 |
[1] |
MANSURIPUR M.
Classical Optics and its Applications[M]. Cambridge, U.K.: Cambridge University Press, 2009: 9-22.
|
[2] |
O'SHEA D C, SULESKI T J, KATHMAN A D,
et al..
Diffractive Optics:
Design,
Fabrication,
and Test[M]. Washington USA: SPIE Press, 2004: 57-82.
|
[3] |
ARBABI A, HORIE Y, BALL A J,
et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays[J].
Nature Communications, 2015, 6(1): 7069.
doi:10.1038/ncomms8069
|
[4] |
KHORASANINEJAD M, CHEN W T, DEVLIN R C,
et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J].
Science, 2016, 352(6290): 1190-1194.
doi:10.1126/science.aaf6644
|
[5] |
KHORASANINEJAD M, SHI ZH J, ZHU A Y,
et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J].
Nano Letters, 2017, 17(3): 1819-1824.
doi:10.1021/acs.nanolett.6b05137
|
[6] |
WANG SH M, WU P C, SU V C,
et al. Broadband achromatic optical metasurface devices[J].
Nature Communications, 2017, 8(1): 187-195.
doi:10.1038/s41467-017-00166-7
|
[7] |
SHRESTHA S, OVERVIG A C, LU M,
et al. Broadband achromatic dielectric metalenses[J].
Light:
Science&
Applications, 2018, 7(1): 85.
|
[8] |
CHEN W T, ZHU Z Y, SANJEEV V,
et al. A broadband achromatic metalens for focusing and imaging in the visible[J].
Nature Nanotechnology, 2018, 13(3): 220-226.
doi:10.1038/s41565-017-0034-6
|
[9] |
WANG SH M, WU P C, SU V C,
et al. A broadband achromatic metalens in the visible[J].
Nature Nanotechnology, 2018, 13(3): 227-232.
doi:10.1038/s41565-017-0052-4
|
[10] |
BALLI F, SULTAN M, LAMI S K,
et al. A hybrid achromatic metalens[J].
Nature Communications, 2020, 11(1): 3892.
doi:10.1038/s41467-020-17646-y
|
[11] |
肖行健, 祝世宁, 李涛. 宽带消色差平面透镜的设计与参量分析[J]. 红外与 工程,2020,49(9):20201032.
doi:10.3788/IRLA20201032
XIAO X J, ZHU SH N, LI T. Design and parametric analysis of the broadband achromatic flat lens[J].
Infrared and Laser Engineering, 2020, 49(9): 20201032. (in Chinese)
doi:10.3788/IRLA20201032
|
[12] |
PALUM R. Image sampling with the Bayer color filter array[C].
PICS 2001:
Image Processing,
Image Quality,
Image Capture,
Systems Conference,
Proceedings, 2001: 239-245.
|
[13] |
AIETA F, KATS M A, GENEVET P,
et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J].
Science, 2015, 347(6228): 1342-1345.
doi:10.1126/science.aaa2494
|
[14] |
ARBABI E, ARBABI A, KAMALI S M,
et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules[J].
Optica, 2016, 3(6): 628-633.
doi:10.1364/OPTICA.3.000628
|
[15] |
AVAYU O, ALMEIDA E, PRIOR Y,
et al. Composite functional metasurfaces for multispectral achromatic optics[J].
Nature Communications, 2017, 8(1): 14992.
doi:10.1038/ncomms14992
|
[16] |
LI ZH Y, LIN P, HUANG Y W,
et al. Meta-optics achieves RGB-achromatic focusing for virtual reality[J].
Science Advances, 2021, 7(5): eabe4458.
doi:10.1126/sciadv.abe4458
|
[17] |
AIETA F, GENEVET P, KATS M A,
et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J].
Nano Letters, 2012, 12(9): 4932-4936.
doi:10.1021/nl302516v
|
[18] |
LIANG H W, MARTINS A, BORGES B H V,
et al. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs[J].
Optica, 2019, 6(12): 1461-1470.
doi:10.1364/OPTICA.6.001461
|
[19] |
HOOKE R, JEEVES T A. “Direct Search”solution of numerical and statistical problems[J].
Journal of the ACM, 1961, 8(2): 212-229.
doi:10.1145/321062.321069
|