Volume 14Issue 4
Jul. 2021
Turn off MathJax
Article Contents
LI Mo-xin, WANG Dan-yan, ZHANG Cheng. Metasurface-based structural color: fundamentals and applications[J]. Chinese Optics, 2021, 14(4): 900-926. doi: 10.37188/CO.2021-0108
Citation: LI Mo-xin, WANG Dan-yan, ZHANG Cheng. Metasurface-based structural color: fundamentals and applications[J].Chinese Optics, 2021, 14(4): 900-926.doi:10.37188/CO.2021-0108

Metasurface-based structural color: fundamentals and applications

doi:10.37188/CO.2021-0108
Funds:Supported by the startup funding from the Huazhong University of Science and Technology
More Information
  • Corresponding author:cheng.zhang@hust.edu.cn
  • Received Date:13 May 2021
  • Rev Recd Date:01 Jun 2021
  • Available Online:02 Jul 2021
  • Publish Date:01 Jul 2021
  • In contrast to conventional color filters exploiting chemical colorant pigments, structural color filters based on micro/nano patterns have potential applications in various fields including optical decoration, displaying, imaging, and photovoltaics, owing to their advantages of high purity, brightness, long-term stability, and environmental friendliness. Thanks to the continuing development of nanofabrication technology, metasurface-based structural color filters with different working mechanisms have been demonstrated. In this review, we will first introduce structural colors based on three representative types of resonance principles, then we will elaborate various applications of structural color filters including full-color display, holographic imaging, information encryption and colored photovoltaic devices. We conclude the review by discussing perspectives of metasurface-based structural colors.

  • loading
  • [1]
    DICK D J, SHAY T M. Ultrahigh-noise rejection optical filter[J]. Optics Letters, 1991, 16(11): 867-869. doi:10.1364/OL.16.000867
    [2]
    PHILIP J, JAYKUMAR T, KALYANASUNDARAM P, et al. A tunable optical filter[J]. Measurement Science and Technology, 2003, 14(8): 1289-1294. doi:10.1088/0957-0233/14/8/314
    [3]
    RAKULJIC G A, LEYVA V. Volume holographic narrow-band optical filter[J]. Optics Letters, 1993, 18(6): 459-461. doi:10.1364/OL.18.000459
    [4]
    UENUMA M, MOTOOKA T. Temperature-independent silicon waveguide optical filter[J]. Optics Letters, 2009, 34(5): 599-601. doi:10.1364/OL.34.000599
    [5]
    EMADI A, WU H, DE GRAAF G, et al. An UV linear variable optical filter-based micro-spectrometer[J]. Procedia Engineering, 2010, 5: 416-419. doi:10.1016/j.proeng.2010.09.135
    [6]
    CORREIA J H, EMADI A R, WOLFFENBUTTEL R F. UV bandpass optical filter for microspectometers[J]. ECS Transactions, 2007, 4(1): 141-147.
    [7]
    IORDANOV V P, LUBKING G W, ISHIHARA R, et al. Silicon thin-film UV filter for NADH fluorescence analysis[J]. Sensors and Actuators A: Physical, 2002, 97-98: 161-166. doi:10.1016/S0924-4247(01)00848-2
    [8]
    GE P F, LIANG X, WANG J H, et al. Optical filter designs for multi-color visible light communication[J]. IEEE Transactions on Communications, 2019, 67(3): 2173-2187. doi:10.1109/TCOMM.2018.2883422
    [9]
    SUNG J Y, CHOW C W, YEH C H. Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?[J]. Optics Express, 2014, 22(17): 20646-20651. doi:10.1364/OE.22.020646
    [10]
    BAQIR M A, CHOUDHURY P K, FATIMA T, et al. Graphene-over-graphite-based metamaterial structure as optical filter in the visible regime[J]. Optik, 2019, 180: 832-839. doi:10.1016/j.ijleo.2018.12.005
    [11]
    SHEN F, KANG Q L, WANG J J, et al. Dielectric metasurface-based high-efficiency mid-infrared optical filter[J]. Nanomaterials, 2018, 8(11): 938. doi:10.3390/nano8110938
    [12]
    ELSAYED H A. A multi-channel optical filter by means of one dimensional n doped semiconductor dielectric photonic crystals[J]. Materials Chemistry and Physics, 2018, 216: 191-196. doi:10.1016/j.matchemphys.2018.06.016
    [13]
    VANYUKOV V V, MIKHEEV G M, MOGILEVA T N, et al. Near-IR nonlinear optical filter for optical communication window[J]. Applied Optics, 2015, 54(11): 3290-3293. doi:10.1364/AO.54.003290
    [14]
    ABE T, MURAKAMI Y, YAMAGUCHI M, et al. Color correction of pathological images based on dye amount quantification[J]. Optical Review, 2005, 12(4): 293-300. doi:10.1007/s10043-005-0293-6
    [15]
    CHAUHAN S S, SHARMA A L, JASRA R V. Photofunctions of dye encapsulated nanostructured silica films suitable for optical filter application[J]. Materials Science Forum, 2013, 757: 257-269. doi:10.4028/www.scientific.net/MSF.757.257
    [16]
    CHOI J, KIM S H, LEE W, et al. Synthesis and characterization of thermally stable dyes with improved optical properties for dye-based LCD color filters[J]. New Journal of Chemistry, 2012, 36(3): 812-818. doi:10.1039/c2nj20938a
    [17]
    JI CH G, ZHANG ZH, MASUDA T, et al. Vivid-colored silicon solar panels with high efficiency and non-iridescent appearance[J]. Nanoscale Horizons, 2019, 4(4): 874-880. doi:10.1039/C8NH00368H
    [18]
    LEE K T, LEE J Y, SEO S, et al. Colored ultrathin hybrid photovoltaics with high quantum efficiency[J]. Light: Science& Applications, 2014, 3(10): e215.
    [19]
    QIU Y B, ZHAN L, HU X, et al. Demonstration of color filters for OLED display based on extraordinary optical transmission through periodic hole array on metallic film[J]. Displays, 2011, 32(5): 308-312. doi:10.1016/j.displa.2011.05.011
    [20]
    GHOBADI A, HAJIAN H, SOYDAN M C, et al. Lithography-free planar band-pass reflective color filter using a series connection of cavities[J]. Scientific Reports, 2019, 9(1): 290. doi:10.1038/s41598-018-36540-8
    [21]
    GOMES DE SOUZA I L, RODRIGUEZ-ESQUERRE V F. Design of planar and wideangle resonant color absorbers for applications in the visible spectrum[J]. Scientific Reports, 2019, 9(1): 7045. doi:10.1038/s41598-019-43539-2
    [22]
    JI CH G, LEE K T, GUO L J. High-color-purity, angle-invariant, and bidirectional structural colors based on higher-order resonances[J]. Optics Letters, 2019, 44(1): 86-89. doi:10.1364/OL.44.000086
    [23]
    KIM Y, SON J, SHAFIAN S, et al. Semitransparent blue, green, and red organic solar cells using color filtering electrodes[J]. Advanced Optical Materials, 2018, 6(13): 1800051. doi:10.1002/adom.201800051
    [24]
    LEE J Y, LEE K T, SEO S, et al. Decorative power generating panels creating angle insensitive transmissive colors[J]. Scientific Reports, 2014, 4: 4192.
    [25]
    LEE K T, HAN S Y, LI Z J, et al. Flexible high-color-purity structural color filters based on a higher-order optical resonance suppression[J]. Scientific Reports, 2019, 9(1): 14917. doi:10.1038/s41598-019-51165-1
    [26]
    LEE K T, KANG D, PARK H J, et al. Design of polarization-independent and wide-angle broadband absorbers for highly efficient reflective structural color filters[J]. Materials, 2019, 12(7): 1050. doi:10.3390/ma12071050
    [27]
    LI ZH Y, BUTUN S, AYDIN K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films[J]. ACS Photonics, 2015, 2(2): 183-188. doi:10.1021/ph500410u
    [28]
    LIN Z H, LONG Y X, ZHU X P, et al. Extending the color of ultra-thin gold films to blue region via Fabry-Pérot-Cavity-Resonance-Enhanced reflection[J]. Optik, 2019, 178: 992-998. doi:10.1016/j.ijleo.2018.09.184
    [29]
    LIU F, SHI H M, ZHU X P, et al. Tunable reflective color filters based on asymmetric Fabry-Perot cavities employing ultrathin Ge 2Sb 2Te 5as a broadband absorber[J]. Applied Optics, 2018, 57(30): 9040-9045. doi:10.1364/AO.57.009040
    [30]
    MAO K N, SHEN W D, YANG CH Y, et al. Angle insensitive color filters in transmission covering the visible region[J]. Scientific Reports, 2016, 6: 19289. doi:10.1038/srep19289
    [31]
    WANG Y S, ZHU X P, CHEN Y Q, et al. Fabrication of Fabry-Perot-cavity-based monolithic full-color filter arrays using a template-confined micro-reflow process[J]. Journal of Micromechanics and Microengineering, 2019, 29(2): 025008. doi:10.1088/1361-6439/aaf6cb
    [32]
    WEI CH W, ABEDINI DERESHGI S, SONG X L, et al. Polarization reflector/color filter at visible frequencies via anisotropic α-MoO 3[J]. Advanced Optical Materials, 2020, 8(11): 2000088. doi:10.1002/adom.202000088
    [33]
    YANG ZH M, CHEN Y Q, ZHOU Y M, et al. Microscopic interference full-color printing using grayscale-patterned Fabry-Perot resonance cavities[J]. Advanced Optical Materials, 2017, 5(10): 1700029. doi:10.1002/adom.201700029
    [34]
    ZHOU J, GUO L J. Transition from a color filter to a polarizer of a metallic nano-slit array[C]. Proceedings of the 2013 IEEE Photonics Conference, IEEE, 2013: 180-181.
    [35]
    FEHREMBACH A L, SENTENAC A. Study of waveguide grating eigenmodes for unpolarized filtering applications[J]. Journal of the Optical Society of America A, 2003, 20(3): 481-488. doi:10.1364/JOSAA.20.000481
    [36]
    RAYLEIGH L. III. Note on the remarkable case of diffraction spectra described by Prof. Wood[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1907, 14(79): 60-65. doi:10.1080/14786440709463661
    [37]
    SHARON A, ROSENBLATT D, FRIESEM A A, et al. Light modulation with resonant grating-waveguide structures[J]. Optics Letters, 1996, 21(19): 1564-1566. doi:10.1364/OL.21.001564
    [38]
    WANG S S, MAGNUSSON R. Theory and applications of guided-mode resonance filters[J]. Applied Optics, 1993, 32(14): 2606-2613. doi:10.1364/AO.32.002606
    [39]
    HEGEDUS Z, NETTERFIELD R. Low sideband guided-mode resonant filter[J]. Applied Optics, 2000, 39(10): 1469-1473. doi:10.1364/AO.39.001469
    [40]
    BOONRUANG S, GREENWELL A, MOHARAM M G. Multiline two-dimensional guided-mode resonant filters[J]. Applied Optics, 2006, 45(22): 5740-5747. doi:10.1364/AO.45.005740
    [41]
    BRUNDRETT D L, GLYTSIS E N, GAYLORD T K. Normal-incidence guided-mode resonant grating filters: design and experimental demonstration[J]. Optics Letters, 1998, 23(9): 700-702. doi:10.1364/OL.23.000700
    [42]
    UDDIN M J, MAGNUSSON R. Efficient guided-mode-resonant tunable color filters[J]. IEEE Photonics Technology Letters, 2012, 24(17): 1552-1554. doi:10.1109/LPT.2012.2208453
    [43]
    LIU Z S, TIBULEAC S, SHIN D, et al. High-efficiency guided-mode resonance filter[J]. Optics Letters, 1998, 23(19): 1556-1558. doi:10.1364/OL.23.001556
    [44]
    TIBULEAC S, MAGNUSSON R. Reflection and transmission guided-mode resonance filters[J]. Journal of the Optical Society of America A, 1997, 14(7): 1617-1626. doi:10.1364/JOSAA.14.001617
    [45]
    MIZUTANI A, KIKUTA H, NAKAJIMA K, et al. Nonpolarizing guided-mode resonant grating filter for oblique incidence[J]. Journal of the Optical Society of America A, 2001, 18(6): 1261-1266. doi:10.1364/JOSAA.18.001261
    [46]
    WANG D Y, WANG Q K, WU M T. Spectral characteristics of a guided mode resonant filter with planes of incidence[J]. Applied Optics, 2018, 57(27): 7793-7797. doi:10.1364/AO.57.007793
    [47]
    QIAN L Y, ZHANG D W, TAO CH X, et al. Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching[J]. Optics Letters, 2016, 41(5): 982-985. doi:10.1364/OL.41.000982
    [48]
    WANG CH T, HOU H H, CHANG P C, et al. Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating[J]. Optics Express, 2016, 24(20): 22892-22898. doi:10.1364/OE.24.022892
    [49]
    WANG Q, ZHANG D W, XU B L, et al. Colored image produced with guided-mode resonance filter array[J]. Optics Letters, 2011, 36(23): 4698-4700. doi:10.1364/OL.36.004698
    [50]
    KAZANSKIY N L, SERAFIMOVICH P G, KHONINA S N. Harnessing the guided-mode resonance to design nanooptical transmission spectral filters[J]. Optical Memory and Neural Networks, 2010, 19(4): 318-324. doi:10.3103/S1060992X10040090
    [51]
    UDDIN M J, MAGNUSSON R. Highly efficient color filter array using resonant Si 3N 4gratings[J]. Optics Express, 2013, 21(10): 12495-12506. doi:10.1364/OE.21.012495
    [52]
    KAPLAN A F, XU T, JAY GUO L. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J]. Applied Physics Letters, 2011, 99(14): 143111. doi:10.1063/1.3647633
    [53]
    ELIKKOTTIL A, TAHERSIMA M H., GUPTA M. V. N. S, et al. A Spectrally tunable dielectric subwavelength grating based broadband planar light concentrator[J]. Scientific Reports, 2019, 9: 11723.
    [54]
    YOON Y T, PARK C H, LEE S S. Highly efficient color filter incorporating a thin metal-dielectric resonant structure[J]. Applied Physics Express, 2012, 5(2): 022501. doi:10.1143/APEX.5.022501
    [55]
    SHYIQ AMIN M, WOONG YOON J, MAGNUSSON R. Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly[J]. Applied Physics Letters, 2013, 103(13): 131106. doi:10.1063/1.4823532
    [56]
    SAKAT E, VINCENT G, GHENUCHE P, et al. Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering[J]. Optics Letters, 2011, 36(16): 3054-3056. doi:10.1364/OL.36.003054
    [57]
    UDDIN M J, KHALEQUE T, MAGNUSSON R. Guided-mode resonant polarization-controlled tunable color filters[J]. Optics Express, 2014, 22(10): 12307-12315. doi:10.1364/OE.22.012307
    [58]
    BARNES W L. Surface plasmon-polariton length scales: a route to sub-wavelength optics[J]. Journal of Optics A: Pure and Applied Optics, 2006, 8(4): S87-S93. doi:10.1088/1464-4258/8/4/S06
    [59]
    BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830. doi:10.1038/nature01937
    [60]
    OZBAY E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193. doi:10.1126/science.1114849
    [61]
    LIAO H B, XIAO R F, WANG H, et al. Large third-order optical nonlinearity in Au: TiO 2composite films measured on a femtosecond time scale[J]. Applied Physics Letters, 1998, 72(15): 1817-1819. doi:10.1063/1.121193
    [62]
    NIE SH M, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J]. Science, 1997, 275(5303): 1102-1106. doi:10.1126/science.275.5303.1102
    [63]
    RICARD D, ROUSSIGNOL P, FLYTZANIS C. Surface-mediated enhancement of optical phase conjugation in metal colloids[J]. Optics Letters, 1985, 10(10): 511-513. doi:10.1364/OL.10.000511
    [64]
    EBBESEN T W, LEZEC H J, GHAEMI H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669. doi:10.1038/35570
    [65]
    MARTÍN-MORENO L, GARCÍA-VIDAL F J, LEZEC H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 2001, 86(6): 1114-1117. doi:10.1103/PhysRevLett.86.1114
    [66]
    HOMOLA J, YEE S S, GAUGLITZ G. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B: Chemical, 1999, 54(1-2): 3-15. doi:10.1016/S0925-4005(98)00321-9
    [67]
    MAYER K M, HAFNER J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6): 3828-3857. doi:10.1021/cr100313v
    [68]
    HUTTER E, FENDLER J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 2004, 16(19): 1685-1706. doi:10.1002/adma.200400271
    [69]
    LIEDBERG B, NYLANDER C, LUNSTRÖM I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors and Actuators, 1983, 4: 299-304. doi:10.1016/0250-6874(83)85036-7
    [70]
    PATTNAIK P. Surface plasmon resonance: applications in understanding receptor-ligand interaction[J]. Applied Biochemistry and Biotechnology, 2005, 126(2): 79-92. doi:10.1385/ABAB:126:2:079
    [71]
    HOMOLA J. Present and future of surface plasmon resonance biosensors[J]. Analytical and Bioanalytical Chemistry, 2003, 377(3): 528-539. doi:10.1007/s00216-003-2101-0
    [72]
    ZENG B B, GAO Y K, BARTOLI F J. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters[J]. Scientific Reports, 2013, 3: 2840. doi:10.1038/srep02840
    [73]
    SHRESTHA V R, LEE S S, KIM E S, et al. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array[J]. Nano Letters, 2014, 14(11): 6672-6678. doi:10.1021/nl503353z
    [74]
    ZHANG J X, ZHANG L D, XU W. Surface plasmon polaritons: physics and applications[J]. Journal of Physics D: Applied Physics, 2012, 45(11): 113001. doi:10.1088/0022-3727/45/11/113001
    [75]
    WU Y K R, HOLLOWELL A E, ZHANG CH, et al. Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit[J]. Scientific Reports, 2013, 3: 1194. doi:10.1038/srep01194
    [76]
    WANG H, WANG X L, YAN CH, et al. Full color generation using silver tandem nanodisks[J]. ACS Nano, 2017, 11(5): 4419-4427. doi:10.1021/acsnano.6b08465
    [77]
    ROBERTS A S, PORS A, ALBREKTSEN O, et al. Subwavelength plasmonic color printing protected for ambient use[J]. Nano Letters, 2014, 14(2): 783-787. doi:10.1021/nl404129n
    [78]
    KUMAR K, DUAN H G, HEGDE R S, et al. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 2012, 7(9): 557-561. doi:10.1038/nnano.2012.128
    [79]
    CLAUSEN J S, HØJLUND-NIELSEN E, CHRISTIANSEN A B, et al. Plasmonic metasurfaces for coloration of plastic consumer products[J]. Nano Letters, 2014, 14(8): 4499-4504. doi:10.1021/nl5014986
    [80]
    CHENG F, GAO J, LUK T S, et al. Structural color printing based on plasmonic metasurfaces of perfect light absorption[J]. Scientific Reports, 2015, 5: 11045. doi:10.1038/srep11045
    [81]
    GOUESBET G, GRÉHAN G. Corrections for Mie theory given in “The Scattering of Light and Other Electromagnetic Radiation”: comments[J]. Applied Optics, 1984, 23(24): 4462_1-4464. doi:10.1364/AO.23.4462_1
    [82]
    WRIEDT T. Mie theory: a review[M]//HERGERT W, WRIEDT T. The Mie Theory: Basics and Applications. Berlin Heidelberg: Springer, 2012: 53-71.
    [83]
    STEINKE J M, SHEPHERD A P. Comparison of Mie theory and the light scattering of red blood cells[J]. Applied Optics, 1988, 27(19): 4027-4033. doi:10.1364/AO.27.004027
    [84]
    LAVEN P. Simulation of rainbows, coronas, and glories by use of Mie theory[J]. Applied Optics, 2003, 42(3): 436-444. doi:10.1364/AO.42.000436
    [85]
    UNGUT A, GREHAN G, GOUESBET G. Comparisons between geometrical optics and Lorenz-Mie theory[J]. Applied Optics, 1981, 20(17): 2911-2918. doi:10.1364/AO.20.002911
    [86]
    LOCK J A, GOUESBET G. Generalized Lorenz-Mie theory and applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(11): 800-807. doi:10.1016/j.jqsrt.2008.11.013
    [87]
    FU Q, SUN W B. Mie theory for light scattering by a spherical particle in an absorbing medium[J]. Applied Optics, 2001, 40(9): 1354-1361. doi:10.1364/AO.40.001354
    [88]
    GOUESBET G. Generalized Lorenz-Mie theory and applications[J]. Particle& Particle Systems Characterization, 1994, 11(1): 22-34.
    [89]
    GOUESBET G, GRÉHAN G. Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion[J]. Journal of Modern Optics, 2000, 47(5): 821-837. doi:10.1080/09500340008235093
    [90]
    MACKOWSKI D. The extension of mie theory to multiple spheres[M]//HERGERT W, WRIEDT T. The Mie Theory: Basics and Applications. Berlin Heidelberg: Springer, 2012: 223-256.
    [91]
    GOUESBET G, GREHAN G. Generalized Lorenz-Mie theory for assemblies of spheres and aggregates[J]. Journal of Optics A: Pure and Applied Optics, 1999, 1(6): 706-712. doi:10.1088/1464-4258/1/6/309
    [92]
    REN K F, GRÉHAN G, GOUESBET G. Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory: formulation and numerical results[J]. Journal of the Optical Society of America A, 1997, 14(11): 3014-3025. doi:10.1364/JOSAA.14.003014
    [93]
    GOUESBET G, MEES L. Generalized Lorenz-Mie theory for infinitely long elliptical cylinders[J]. Journal of the Optical Society of America A, 1999, 16(6): 1333-1341. doi:10.1364/JOSAA.16.001333
    [94]
    GOUESBET G. Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres[J]. Journal of the Optical Society of America A, 1999, 16(7): 1641-1650. doi:10.1364/JOSAA.16.001641
    [95]
    GOUESBET G, MEES L. Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz-Mie theory for elliptical cylinders[J]. Journal of the Optical Society of America A, 1999, 16(12): 2946-2958. doi:10.1364/JOSAA.16.002946
    [96]
    GOUESBET G, GRÉHAN G, REN K F. Rigorous justification of the cylindrical localized approximation to speed up computations in the generalized Lorenz-Mie theory for cylinders[J]. Journal of the Optical Society of America A, 1998, 15(2): 511-523. doi:10.1364/JOSAA.15.000511
    [97]
    CAO L Y, WHITE J S, PARK J S, et al. Engineering light absorption in semiconductor nanowire devices[J]. Nature Materials, 2009, 8(8): 643-647. doi:10.1038/nmat2477
    [98]
    CAO L Y, FAN P Y, BARNARD E S, et al. Tuning the color of silicon nanostructures[J]. Nano Letters, 2010, 10(7): 2649-2654. doi:10.1021/nl1013794
    [99]
    FLAURAUD V, REYES M, PANIAGUA-DOMÍNGUEZ R, et al. Silicon nanostructures for bright field full color prints[J]. ACS Photonics, 2017, 4(8): 1913-1919. doi:10.1021/acsphotonics.6b01021
    [100]
    NAGASAKI Y, SUZUKI M, TAKAHARA J. All-dielectric dual-color pixel with subwavelength resolution[J]. Nano Letters, 2017, 17(12): 7500-7506. doi:10.1021/acs.nanolett.7b03421
    [101]
    PARK C S, SHRESTHA V R, YUE W J, et al. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks[J]. Scientific Reports, 2017, 7(1): 2556. doi:10.1038/s41598-017-02911-w
    [102]
    PROUST J, BEDU F, GALLAS B, et al. All-dielectric colored metasurfaces with silicon Mie resonators[J]. ACS Nano, 2016, 10(8): 7761-7767. doi:10.1021/acsnano.6b03207
    [103]
    ZHU X L, YAN W, LEVY U, et al. Resonant laser printing of structural colors on high-index dielectric metasurfaces[J]. Science Advances, 2017, 3(5): e1602487. doi:10.1126/sciadv.1602487
    [104]
    YANG W H, XIAO S M, SONG Q H, et al. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 2020, 11: 1864.
    [105]
    SUN SH, ZHOU ZH X, ZHANG CH, et al. All-dielectric full-color printing with TiO 2metasurfaces[J]. ACS Nano, 2017, 11(5): 4445-4452.
    [106]
    LIU H, YANG H, LI Y R, et al. Switchable All-dielectric metasurfaces for full-color reflective display[J]. Advanced Optical Materials, 2019, 7(8): 1801639.
    [107]
    YANG B, LIU W W, LI ZH CH, et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels[J]. Advanced Optical Materials, 2018, 6(4): 1701009.
    [108]
    TAN S J, ZHANG L, ZHU D, et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures[J]. Nano Letters, 2014, 14(7): 4023-4029. doi:10.1021/nl501460x
    [109]
    HUO P CH, SONG M W, ZHU W Q, et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface[J]. Optica, 2020, 7(9): 1171-1172. doi:10.1364/OPTICA.403092
    [110]
    WEI Q SH, SAIN B, WANG Y T, et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces[J]. Nano Letters, 2019, 19(12): 8964-8971. doi:10.1021/acs.nanolett.9b03957
    [111]
    ZHANG F, PU M B, GAO P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Advanced Science, 2020, 7(10): 1903156. doi:10.1002/advs.201903156
    [112]
    ZANG X F, DONG F L, YUE F Y, et al. Polarization encoded color image embedded in a dielectric metasurface[J]. Advanced Materials, 2018, 30(21): 1707499. doi:10.1002/adma.201707499
    [113]
    KO J H, YOO Y J, KIM Y J, et al. Flexible, large-area covert polarization display based on ultrathin lossy nanocolumns on a metal film[J]. Advanced Functional Materials, 2020, 30(11): 1908592. doi:10.1002/adfm.201908592
    [114]
    JOO W J, KYOUNG J, ESFANDYARPOUR M, et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch[J]. Science, 2020, 370(6515): 459-463. doi:10.1126/science.abc8530
    [115]
    PARK H J, XU T, LEE J Y, et al. Photonic color filters integrated with organic solar cells for energy harvesting[J]. ACS Nano, 2011, 5(9): 7055-7060. doi:10.1021/nn201767e
    [116]
    HUERTAS R, ÁNGEL MARTÍNEZ-DOMINGO M, VALERO E M, et al. Metasurface-based contact lenses for color vision deficiency: comment[J]. Optics Letters, 2020, 45(18): 5117-5118. doi:10.1364/OL.394717
    [117]
    SHAH Y D, CONNOLLY P W R, GRANT J P, et al. Ultralow-light-level color image reconstruction using high-efficiency plasmonic metasurface mosaic filters[J]. Optica, 2020, 7(6): 632-639. doi:10.1364/OPTICA.389905
    [118]
    SONG H Y, MA Y G, HAN Y B, et al. Deep-learned broadband encoding stochastic filters for computational spectroscopic instruments[J]. Advanced Theory and Simulations, 2021, 4(3): 2000299. doi:10.1002/adts.202000299
    [119]
    DUAN X Y, LIU N. Scanning plasmonic color display[J]. ACS Nano, 2018, 12(8): 8817-8823. doi:10.1021/acsnano.8b05467
    [120]
    NAGASAKI Y, SUZUKI M, HOTTA I, et al. Control of Si-based all-dielectric printing color through oxidation[J]. ACS Photonics, 2018, 5(4): 1460-1466. doi:10.1021/acsphotonics.7b01467
    [121]
    WU Y K, YANG W H, FAN Y B, et al. TiO 2metasurfaces: from visible planar photonics to photochemistry[J]. Science Advances, 2019, 5(11): eaax0939. doi:10.1126/sciadv.aax0939
    [122]
    FENG Z Y, JIANG CH, HE Y, et al. Widely adjustable and quasi-reversible electrochromic device based on core-shell Au-Ag plasmonic nanoparticles[J]. Advanced Optical Materials, 2014, 2(12): 1174-1180. doi:10.1002/adom.201400260
    [123]
    ZHANG CH, JING J X, WU Y K, et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response[J]. ACS Nano, 2020, 14(2): 1418-1426. doi:10.1021/acsnano.9b08228
    [124]
    HOLSTEEN A L, CIHAN A F, BRONGERSMA M L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces[J]. Science, 2019, 365(6450): 257-260. doi:10.1126/science.aax5961
    [125]
    LEE Y, PARK M K, KIM S, et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J]. ACS Photonics, 2017, 4(8): 1954-1966. doi:10.1021/acsphotonics.7b00249
    [126]
    SUN SH, YANG W H, ZHANG CH, et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces[J]. ACS Nano, 2018, 12(3): 2151-2159. doi:10.1021/acsnano.7b07121
    [127]
    CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of sub‐25 nm vias and trenches in polymers[J]. Applied Physics Letters, 1995, 67(21): 3114-3116. doi:10.1063/1.114851
    [128]
    CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint lithography with 25-nanometer resolution[J]. Science, 1996, 272(5258): 85-87. doi:10.1126/science.272.5258.85
    [129]
    KRAUSS P R, CHOU S Y. Sub-10 nm imprint lithography and applications[C]. Proceedings of the 1997 55th Annual Device Research Conference Digest, IEEE, 1997.
    [130]
    AHN S H, KIM J S, GUO L J. Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate[J]. Journal of Vacuum Science& Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2007, 25(6): 2388-2391.
    [131]
    PARK H J, KANG M G, AHN S H, et al. A Facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performances[J]. Advanced Materials, 2010, 22(35): E247-E253. doi:10.1002/adma.201000250
    [132]
    SHIN S, YANG M Y, GUO L J, et al. Roll-to-roll cohesive, coated, flexible, high-efficiency polymer light-emitting diodes utilizing ITO-free polymer anodes[J]. Small, 2013, 9(23): 4036-4044. doi:10.1002/smll.201300382
    [133]
    SUBBARAMAN H, LIN X H, XU X CH, et al.. Metrology and instrumentation challenges with high-rate, roll-to-roll manufacturing of flexible electronic systems[C]. Proceedings of SPIE, Instrumentation, Metrology, and Standards for Nanomanufacturing, Optics, and Semiconductors VI, SPIE, 2012: 846603.
    [134]
    WANG L, MA L J, ZHAO Q L, et al. Internal nanocavity based high-resolution and stable structural colours fabricated by laser printing[J]. Optics Express, 2021, 29(5): 7428-7234. doi:10.1364/OE.418103
    [135]
    GUAY J M, LESINA A C, CÔTÉ G, et al. Laser-induced plasmonic colours on metals[J]. Nature Communications, 2017, 8: 16095. doi:10.1038/ncomms16095
    [136]
    LUK'YANCHUK B, ZHELUDEV N I, MAIER S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010, 9(9): 707-715. doi:10.1038/nmat2810
    [137]
    RAHMANI M, LUK'YANCHUK B, HONG M H, et al. Fano resonance in novel plasmonic nanostructures[J]. Laser& Photonics Reviews, 2013, 7(3): 329-349.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)

    Article views(3797) PDF downloads(822) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map